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INTRODUCTION

The process of metastasis involves the migration of tumor cells 
from the primary site to other parts of the body via the blood 
stream or lymphatic channels. Metastatic tumor cells are able 
to proliferate and grow in secondary sites by escaping from im-

mune surveillance. Bone tissue is one of the three sites, most 
preferred for solid tumor metastasis,1 indicating that the bone 
microenvironment is compatible with secondary tumor 
growth. Furthermore, common types of cancer, such as breast, 
lung and prostate cancers, are more likely to result in bone 
metastasis than other types of cancer.1 It is estimated that 
when breast cancer metastasizes to bone, the relative five-year 
survival rate falls from 90% to less than 10%, indicating a great-
er need for further investigations into its mechanisms and tre-
atments.2

Bone metastasis affects normal bone remodeling, leading to 
discrete osteolysis, diffuse osteopenia and osteoblastic lesion.1 
Osteolytic tumors have a detrimental effect on the geometry of 
the bone and its biomechanical properties, since cancer cells 
enhance bone resorption.3 The factors released from bone sub-
sequent to resorption (e.g., TGF-β1) provide positive feedback 
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to the tumor cells, creating a cycle of decay.4,5

There are two main categories of drugs for the treatment of 
tumor osteolysis, namely anti-cancer and anti-resorptive drugs. 
Paclitaxel, a taxane, is the most commonly used anti-cancer 
drug to treat breast cancer.6-8 Paclitaxel, also known as taxol, 
acts mainly by stabilizing microtubule assembly through non-
covalent interactions with tubulin, resulting in blockage of cell 
replication in the late G2 mitotic phase of the cell cycle, inhib-
iting proliferation.9 Bisphosphonates, on the other hand, are a 
class of anti-resorptive drugs that reduce bone resorption by 
inhibiting osteoclast activity. Traditionally, bisphosphonates 
were used in the treatment of osteoporosis, Paget’s disease, 
and other bone metabolic diseases.10-12 More recently, research-
ers have established the efficacy of bisphosphonates in the 
treatment of bone metastases.5,13-16 In particular, ibandronate, 
a third generation nitrogen-containing bisphosphonate, has 
been shown to have the capability to prevent tumor-induced 
osteolysis and hypercalcemia of malignancy10,17,18 by inhibit-
ing osteoclast activity. In spite of zoledronic acid being a prom-
inent choice in recent studies as a more potent source of bis-
phosphonate, ibandronate was chosen for this study, because 
zoledronic acid is much more likely to cause renal tubule in-
jury, leaving ibandronate an attractive viable option for pa-
tients.19,20

Most animal models, which have been developed to study 
bone metastasis are that of immuno-compromised animals,21-24 
which might not adequately represent events in bone metas-
tasis, since the interactions between the immune system, tu-
mor cells and the bone environment are not entirely preserved. 
Moreover, the treatment response of chemotherapeutic (pa-
clitaxel) and anti-resorptive (ibandronate) drugs on bones af-
fected by osteolytic tumors has not yet been thoroughly stud-
ied with the use of an immunocompetent animal model. Ther-
efore, the objective of this study is to investigate the micro-
architectural and mechanical effects of chemotherapeutic 
(paclitaxel) and anti-resorptive (ibandronate) treatments, to-
gether with an analysis of bone resorption markers [deoxypyr-
idinoline (Dpd)] in a tumor metastatic immunocompetent 
animal model. It is hypothesized that anti-resorptive drugs 
(ibandronate) are as effective as high doses of chemothera-
peutic (paclitaxel) drug in preserving bone micro-architectur-
al and mechanical properties.

MATERIALS AND METHODS

Cell culture
Walker carcinoma 256 (W256) malignant rat breast cancer cells 
(ATCC, CCL-38 LLC-WRC 256 cells, Manassas, VA, USA) were 
cultured in M199 culture media (Sigma-Aldrich, St. Louis, MO, 
USA) with 5% horse serum (Sigma-Aldrich, St. Louis, MO, 
USA). The cells were maintained in a 5% carbon dioxide incu-
bator at 37°C. On the day of surgery, cells were harvested and 
counted using a hemocytometer. Approximately 2.5×106 cells 
were suspended in 0.5 mL of saline in every surgery and used 
to develop the osteolytic tumor rat model.

Animals
Seventy female Sprague-Dawley (SD) rats, aged 10–12 weeks, 
were housed at the Laboratory Animal Centre in a light-con-
trolled environment (12 h light-dark cycle) under standard tem-
perature (23±1°C). They were fed with standard rodent chow 
and water ad libitum. The rats were randomly divided into four 
groups (SHAM, CANC, IBAN, and PAC). SHAM (n=16) was the 
control group while CANC (n=18) was used to observe the ef-
fect and progression of tumor growth. IBAN (n=18) and PAC 
(n=18) were administered with ibandronate and paclitaxel, 
respectively. All rats from the CANC, IBAN, and PAC groups 
had Walker Carcinoma 256 cells injected into their right femo-
ral medullary canal via a drill hole made through the intercon-
dylar notch to develop the osteolytic tumor.18 Rats from the 
SHAM group (n=16) also underwent similar surgical proce-
dure, but saline was injected instead of cancer cells. 

The IBAN group rats were given a subcutaneous adminis-
tration of ibandronate (Bondronat®, Roche Diagnostics GmbH, 
Mannheim, Germany) at a dosage of 250 μg/kg of rat,18 once 
every ten days, starting from the day of the surgery. The in-
creased inhibition of osteoclast resorption, coupled with ongo-
ing bone formation, results in preservation of bone mass and 
architecture. However, exceeding a certain threshold of drug 
dosage (in this case 10 μg P/kg) results in decreased bone for-
mation.25 This is why the mid value of the prescribed range 
(0.1<1<10 μg P/kg/day) was chosen. Paclitaxel (Anzatax®, 
Mayne Pharma Pte Ltd., Salisbury South, Australia) was ad-
ministered intravenously at a dosage of 10 mg/kg of rat via the 
lateral tail vein of the PAC group rats, once every 10 days from 
the day of surgery.7 The CANC and SHAM group rats were giv-
en placebo treatment. Six (IBAN, PAC, and CANC) and four 
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Fig. 1. X-ray showing (A) sham operated left femur of SHAM group and (B) osteolytic lesions (white arrows) in left femur of CANC group.26
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(SHAM) rats from each group were euthanized at intervals of 
10 days and the femoral bones were harvested. The excised fe-
murs were cleaned such that soft tissue was removed, wrapped 
in 0.9% saline-soaked gauze and stored in -20°C freezer. 

X-ray
X-ray scanning of all rats was performed 10 days after the tu-
mor inoculations by using Kodak DXS 4000 system at 35 kV for 
2 minutes. X-ray analysis was performed with radiological 
scores given as follows: Grade 0 for no radiolucent lesion ob-
served, Grade 1 for minimal but detectable lysis within the ca-
nal, Grade 2 for moderate lysis limited to the canal, and Grade 
3 for extensive lesions extending into soft tissues.2,26 In this 
study, rats with detectable osteolysis were chosen for CANC 
and treatment (IBAN, PAC) groups. Only rats with osteolytic 
response (Grade 3 as in Fig. 1B) were utilized since sclerosis 
(tissue hardening) develops in slow growing or benign osteo-
lytic lesions, in which it appears to limit lesion growth indicat-
ing regression of osteolysis.26

Micro-computed tomography
Prior to micro-computed tomography (μCT) scanning, the fe-
murs were thawed to room temperature (25°C). The right distal 
femoral metaphysis was scanned using the SkyScan μCT ma-
chine (SkyScan 1172, Konitch, Belgium). The volume of interest 
(VOI), containing 152 CT slices, was located 6 mm away from 

the distal intercondylar notch and covered a region of 2 mm of 
the distal femur metaphysis as shown in Fig. 2A. Resolution of 
the scans was set at 13.148 μm. An average pixel size of 6 μm 
was used for scanning. These images were then analyzed, and 
four morphological indices, namely bone volume faction (BV/
TV), trabecular number (Tb.N), trabecular separation (Tb.Sp) 
and trabecular thickness (Tb.Th), were obtained for micro-ar-
chitectural analysis.3

Mechanical testing
The failure load (Fx) and stiffness (S) of femur specimens were 
obtained using the three-point bending test (Instron 5848 mi-
cro-testing machine, Norwood, MA, USA). Prior to testing, the 
femurs were thawed in 0.9% saline for about two hours until 
they reached room temperature (–25°C). Femurs were placed 
posterior side up on supports spanning 15 mm and a stabiliz-
ing preload of 10 N was applied at the center of the femur. The 
specimen was loaded till fracture at a deformation rate of 0.1 
mm/s. The data acquisition interval was set to 5 ms. Testing 
conditions were determined through preliminary experi-
ments.27,28 The maximum force observed in the load-deforma-
tion plot was taken as Fx and the slope of the linear portion of 
the plot as the S. 

Bone turnover marker
Approximately 1 mL of blood was collected from the central tail 
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Fig. 2. (A) Sprague-Dawley rat femur showing the VOI for micro-CT scanning. (B) Micro-CT image of the distal femurs of SHAM, IBAN, PAC, and 
CANC groups at 30 days. VOI, volume of interest; ML, medial lateral; PD, proximal distal.
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artery of each rat at 0, 10, 20, and 30 days. After standing for an 
hour, the blood was centrifuged at 4600 rpm for 20 minutes. 
The serum was then separated and stored at -20°C. The Metra® 
Total DPD EIA Kit (Mountain View, CA, USA) was used to de-
termine the level of Dpd in serum to assess bone resorption 
activity.29

Statistical analysis
The SPSS 16.0 software (SPSS Inc., Chicago, IL, USA) was used 
for statistical analysis. Mean and standard deviation of all the 
variables were reported. One-way ANOVA was performed by 
time to determine significant differences between different 
groups at each time point. Similarly, one-way ANOVA test was 
also performed by respective groups to determine the signifi-
cant differences of each group over the time period. Bonferroni 
corrections were used for all the comparisons and the results 
were considered to be statistically significant when p<0.05.

RESULTS

Morphological analysis
X-ray images of the SHAM and CANC groups are shown in Fig. 
1. The cancer induced right femur (Fig. 1B) shows obvious os-
teolytic, radiolucent lesions (white arrows) unlike the sham op-
erated right femur (Fig. 1A). 

μCT images (1.5 mm by 1.5 mm) of distal rat femurs of all 
the four groups are shown in Fig. 2B. The CANC group exhib-
ited reduced bone mass compared to the SHAM group. On the 
other hand, the IBAN and PAC groups displayed increased 
bone mass compared to the CANC group, indicating their ef-
ficacy in preventing bone loss.

The changes in BV/TV, Tb.N, Tb.Sp, and Tb.Th of different 
groups with respect to time are indicated in Fig. 3, respectively. 
Analysis of the four groups indicated that there were no signif-
icant differences in Tb.Th across groups or time. As expected, 
the SHAM group revealed no significant variation in morpho-

Fig. 3. Changes in morphological parameters of 4 different groups (SHAM, IBAN, PAC, and CANC) at 0, 10, 20, and 30 days using micro-CT. (A) Bone 
volume ratio, bone volume fraction (BV/TV). (B) Trabecular number (Tb.N). (C) Trabecular separation (Tb.Sp). (D) Trabecular thickness (Tb.Th). *Signif-
icance (p<0.05) with respect to CANC group by one way ANOVA with Bonferroni corrections. 
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logical indices across the entire duration of the experiment.
However, 20 days post-surgery, CANC group showed a sig-

nificant decrease in the BV/TV and Tb.N, while the Tb.Sp sho-
wed a significant increase as compared to the SHAM group. 
By the 30th day post-surgery, BV/TV and Tb.N of the CANC 
group were lower than those of the SHAM group by 36% (p< 
0.001) and 38% (p=0.007), respectively. Furthermore, Tb.Sp of 
the CANC group was 92% higher than that of the SHAM group 
(p<0.001). These results confirm the successful induction of 
osteolytic tumors in the CANC group rats. 

Starting from 20 days post-surgery, IBAN group rats showed 
significant variation in the morphological indices, i.e., the IBAN 
group was 40% (p=0.04) higher than CANC in BV/TV and 32% 
lower in Tb.Sp (p<0.001). However, Tb.N did not vary signifi-
cantly between the two groups. Also, bone morphological in-
dices of the IBAN group were not significantly different from 
those of the SHAM group.

The PAC group did not show significant differences in the 
BV/TV or Tb.N as compared to the CANC group at any point 
in the experiment. However, at the 30th day post-surgery, 
Tb.Sp of the PAC group was 22% lower than that of the CANC 
group (p=0.036). Unlike the IBAN group, the PAC group also 
showed significant differences in the BV/TV, Tb.N, and Tb.Sp, 
compared to the SHAM group. 

Mechanical testing
Fx and S of different groups of rats with respect to time are 
shown in Fig. 4, respectively. The SHAM group showed no sig-
nificant differences in the Fx and S of the bone over time. 
However, the CANC group showed significant decrease in 
both Fx and S. The decrease in Fx gained significance by the 
30th day post-surgery (13.3%, p<0.03) and the decrease in S 
gained significance by the 20th day post-surgery (12.5%, p< 
0.001) as compared to SHAM.

The Fx values for both PAC and IBAN groups were similar 
and significantly higher than those of CANC group. Thirty 
days after surgery, the IBAN group had a 7.7% higher S value 
than CANC group (p=0.036) and 6.9% lower than SHAM group 
(p=0.041). There was no significant difference in the S values 
between the PAC and IBAN groups. 

Bone turnover marker
The serum Dpd concentration for each rat was normalized 
against the reading on day zero, as shown in Table 1. The Dpd 
concentration of the CANC group increased by 31% after 10 
days, 27% after 20 days, and 11.8% after 30 days, while Dpd 
concentrations in the SHAM group showed no significant vari-
ation. 

The Dpd concentration of the IBAN group decreased by 
37.9% after 10 days, 48.2% after 20 days, and 38.9% after 30 
days, indicating that ibandronate treatment is effective in de-

Table 1. Serum Total Dpd Concentration of Four Different Animal Groups (SHAM, IBAN, PAC, and CANC)

Parameter Group
Time from surgery (days)

0 10 20 30

Dpd (normalized)

SHAM 1.00 1.03 0.92 0.88
IBAN 1.00 0.62* 0.52* 0.61*
PAC 1.00 1.19 1.15 1.28
CANC 1.00 1.31* 1.27* 1.18*

*p<0.05 as compared to the 0 day data.

Fig. 4. Changes in (A) failure load (Fx) and (B) stiffness (S) of 4 different groups (SHAM, IBAN, PAC, and CANC) at 0, 10, 20, and 30 days. *Significance 
(p<0.05) with respect to CANC group by one way ANOVA with Bonferroni corrections. 
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creasing bone resorption. The PAC group did not show a clear 
trend in serum Dpd levels. This implies that there was no de-
crease in bone resorption activity for paclitaxel treated bones.

DISCUSSION

This study investigated the effects of tumor-induced osteolysis 
in an immunocompetent rodent model involving the inocula-
tion of W256 carcinoma cells in SD rat femur. The efficacy of 
chemotherapeutic (paclitaxel) and anti-resorptive (ibandro-
nate) treatment in overcoming the effects of metastasis was 
analyzed in terms of bone structural properties, biomechani-
cal properties and biochemical marker analysis. 

It has been reported that granulocytes can play an impor-
tant role in immune response against initial stages of Walker 
256 carcinoma development in SD rats, potentially affecting 
the characteristics of the tumor and are subsequently estab-
lished in the host environment.30 The varied tumor responses 
observed in different host bodies subsequent to the inocula-
tion of tumor cells could be a consequence of host body im-
mune response. Four responses were noted; osteolytic, mixed 
(osteolytic with osteosclerotic signs), osteosclerotic healing fl-
are and no response. Only rats with osteolytic responses were 
utilized for the cancer (CANC) and treatment (IBAN, PAC) 
groups in this study. It is an observation, although not unex-
pected, which was not widely reported in earlier studies of 
immunocompetent models31 including the study conducted 
by Kurth and Müller3 It could be due to a pre-selection of cell 
types prior to surgery i.e., induction of ascites in host bodies23 
or soft agar growth of tumor cells before surgery.3 Nonethe-
less, successful adoption of an immunocompetent model imi-
tates the actual environment in tumor osteolysis and helps 
clarify the effects of drugs on bone metastasis in a clinical set-
ting.

Successful osteolytic tumor induction in this model had a 
harmful effect on bone architecture, as seen from the signifi-
cant drop in BV/TV and Tb.N and rise in Tb.Sp in the CANC 
group in 20 days after surgery. This deterioration in bone ar-
chitecture32-34 was reflected in the biomechanical properties 
of bone, as evidenced from the decreased Fx and S of the bone 
on the 30th day post-surgery. The total serum Dpd concentra-
tion also showed an increase after tumor induction. Based on 
these results and μCT images, it is reasonable to conclude that 
tumor growth had been induced in the femoral bone in the 
osteolytic tumor rat models, causing accelerated bone resorp-
tion and micro-architectural deterioration, further leading to 
the loss of biomechanical competence in bone.

Previous studies showed that Tb.Th varied significantly af-
ter tumor induction.3,18 However, we did not observe statisti-
cally significant differences in Tb.Th between different groups 
or at different time periods. It is possible that Tb.Th is decreas-
ing and the trend is masked by the disconnection of thinner 

trabeculae. 
Morphological indices showed that ibandronate (anti-re-

sorptive drug) had a better effect in treating tumor-induced 
architectural changes in bone than paclitaxel (chemothera-
peutic drug). On the 30th day post-surgery, the BV/TV of IBAN 
was 40% higher than that of the CANC group, whereas a sig-
nificant difference was not observed in the PAC group. This 
concurs with the study conducted by Strube, et al.,35 where 
MDA-MB-231 (SA) breast cancer to bone metastasis mouse 
model treated with paclitaxel (9 mg/kg i.p. once daily, 13–17 
days) failed to show any significant change in BV/TV, com-
pared to the vehicle-treated group. Similarly, Tb.Sp of the IBAN 
group was found to be 32% lower than that of the CANC group 
as compared to 22% of the PAC group. This trend indicates 
that ibandronate is more effective than paclitaxel in maintain-
ing the structural properties of bone and preventing tumor-
induced bone architectural changes. These experimental ob-
servations can be related to the mechanism of action of indi-
vidual drugs, i.e., ibandronate directly inhibits osteoclast resor-
ption and promotes osteoclast apoptosis at a later time16,36 
while paclitaxel stabilizes microtubule formation, arresting 
tumor cell division at the mitotic boundary,37 thereby indirect-
ly affecting the degree of bone destruction induced by tumor 
cells.

Also, Dpd concentrations were significantly lower in the 
IBAN group, indicating successful inhibition of bone resorp-
tion and destruction. However, paclitaxel appeared to have no 
effect on Dpd concentration, and consequently, minimal effect 
on osteoclast resorption. Earlier in vitro studies have shown 
dose-related inhibition effects of paclitaxel on osteoclastic re-
sorption.35,38 However, paclitaxel is now shown to have negli-
gible in-vivo effect on bone resorption even at 10 mg/kg, which 
is the maximum dosage that could be safely administered to 
rodent models.7,37,39,40

Apart from inhibiting osteoclast resorption, ibandronate 
treatment may allow more time for secondary mineralization,41 
which aids in increasing bone mineral density,10,42 thus pre-
serving bone S. There are also reports of in vitro and in vivo 
evidence of bisphosphonates having anti-tumor effects25,41-48 
which might aid further preservation of bone strength and in-
tegrity. Therefore, the finding that ibandronate (250 μg/kg) 
has similar efficacy in maintaining bone mechanical proper-
ties to high doses of paclitaxel (10 mg/kg) is surprising since 
efficacy of ibandronate in bone preservation is well-estab-
lished. Paclitaxel, on the other hand, is shown to have negligi-
ble effect on in vivo bone resorption, nevertheless, it preserves 
bone mechanical properties, comparable to ibandronate.

Before postulating that paclitaxel may have a direct effect 
on bone through other mechanisms that do not involve inhi-
bition of bone resorption, bone biopsy and subsequent histo-
morphometric analysis are required to derive explicit conclu-
sions on the effect of paclitaxel on bone remodeling.35,38 His-
tomorphometric analysis will also be useful in determining 
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the extent to which ibandronate affects tumor proliferation 
and growth in the intramedullary space. Halvorson, et al.36 re-
ported that ibandronate induced extensive tumor cell necro-
sis in C3H/HeJ mice bearing osteolytic 2472 sarcoma cells. 
Earlier in vitro studies have also suggested that bisphospho-
nates have an influence on neovascularization.36 The specific 
mechanisms by which bisphosphonates can influence the 
growth of tumor metastasis and its viability are currently un-
clear and developing an understanding is an important objec-
tive of future research in the field of drug therapeutics.

In summary, an immunocompetent model was adopted 
where Walker 256 carcinoma cells provoked a localized in-
crease in bone resorption, resulting in bone loss. Ibandronate 
was found to be as effective as high doses of paclitaxel in 
maintaining S of bone. Paclitaxel treatment did not appear to 
inhibit osteoclast resorption, which is contrary to earlier in vi-
tro literature. The immune system also plays a plausible role 
in the selection of tumor cells as seen from the varied respons-
es of the heterogeneous W256 carcinoma cells in the different 
host bodies. Emphasis should be placed on the use of immu-
nocompetent models for examining drug efficacy for bone 
metastasis since it adequately reflects bone metastasis in clin-
ical scenarios. 
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