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Sequencing depth, which is directly related to the cost and time required for the generation, processing, and maintenance 
of next-generation sequencing data, is an important factor in the practical utilization of such data in clinical fields. 
Unfortunately, identifying an exome sequencing depth adequate for clinical use is a challenge that has not been addressed 
extensively. Here, we investigate the effect of exome sequencing depth on the discovery of sequence variants for clinical use. 
Toward this, we sequenced ten germ-line blood samples from breast cancer patients on the Illumina platform GAII(x) at a 
high depth of ∼200×. We observed that most function-related diverse variants in the human exonic regions could be 
detected at a sequencing depth of 120×. Furthermore, investigation using a diagnostic gene set showed that the number of 
clinical variants identified using exome sequencing reached a plateau at an average sequencing depth of about 120×. 
Moreover, the phenomena were consistent across the breast cancer samples.

Keywords: clinical application, diagnostic variant, exome sequencing, genetic variation, high-throughput nucleotide 
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Introduction

Exome capture sequencing (simply referred to as "exome 
sequencing") is a next generation sequencing (NGS)-based 
technique which targets the genomic sequences of pro-
tein-coding regions ("exomes") of a species [1]. Although 
protein-coding regions constitute only 1% of the human 
genome, they harbor 85% of the mutations that have 
significant effects on disease-related traits [2]. Therefore, 
exome sequencing is a potential contributor to the under-
standing of diverse human diseases [2].

With a dramatic decrease in the cost and time required for 
the generation of sequences with high accuracy [3], exome 

sequencing is now widely used to understand many genetic 
diseases. For example, in the Netherlands, exome sequencing 
of ten blood samples from patients with severe intellectual 
disabilities allowed the identification of five new candidate 
genes associated with such disabilities [4]. Further, Ng et al. 
[1] sequenced the exomes of twelve human samples with or 
without Freeman-Sheldon syndrome (FSS), which is a rare 
dominantly inherited disorder, and observed an association 
between the MYH3 gene was responsible for FSS. Furthermore, 
Huh et al. [5] used exome sequencing to show that the c.234 
G ＞ A and c.1150C ＞ T mutations in exon 18 of the 
HGSNAT gene were common in mucopolysaccharide 
patients. Exome sequencing techniques have also been used 
to understand the risks of various cancers, including those of 
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the breast [6, 7], prostate [8], pancreas [9], and others 
[10-12]. Therefore, exome sequencing techniques have 
become a new primary paradigm for research on genetic 
diseases and cancers. 

One important issue that needs to be addressed for the 
clinical utilization of NGS-based sequencing data is the 
adequate depth of sequencing. Sequencing depth is directly 
related to the cost and time required for the generation, 
processing, and maintenance of sequencing data [13]. In this 
vein, several studies have been performed to investigate the 
impact of sequencing depth on NGS data intended to identify 
genomic variants. For example, Hou et al. [14] investigated 
the discovery rates of single nucleotide polymorphisms 
(SNPs) and structural variants in healthy samples using 
whole genome sequencing (WGS) at an average sequencing 
depth of 180×. They observed that most of the variations 
were identified at an average depth of 100×. Meanwhile, 
Ajay et al. [15] calculated the genome coverage and discovery 
rates of variants in healthy samples using WGS data at 100× 
average mapped depth. The callable portion of the genome 
was 90% at a depth of 40×, and that of the protein-coding 
exome region was about 88% at a depth of 100×. However, 
these studies analyzed sequencing data derived from healthy 
individuals; the adequate depth required to discover 
clinically significant variations still needs to be addressed.

In this study, we investigated for the first time the effect of 
exome sequencing depth on the discovery of genomic 
variations for clinical use. Toward this, we performed exome 
sequencing in ten germ-line blood samples from breast 
cancer patients using the Illumina platform GAII(x) at a high 
depth of ∼200×. We also checked the discovery rates of 
diverse variations as a function of the sequencing depth, 
using total and diagnostic gene sets.

Methods
Samples and sequencing

Total ten subjects were included in this study. They were 
enrolled from the Seoul National University Hospital and 
Seoul National University Bundang Hospital in Korea. They 
were all diagnosed with breast cancer, with a history of two 
or more affected family members and/or other risk factors, 
like bilateral breast cancer or young age of onset. Exome 
capture was carried out with the blood samples of the ten 
subjects using Agilent exome capture kits (SureSelect V2) 
and sequencing was performed on the (Illumina, San Diego, 
CA, USA).

Sequence alignment and variant calling

The raw reads in the prepared datasets were aligned to the 
hg19 reference genome, which was downloaded from the 

University of California Santa Cruz (UCSC) genome browser 
(http://genome.ucsc.edu/), using BWA (bwa-0.6.2) [16] 
with default parameters and a seed length of 45 bp. The 
Sequence Alignment and Mapping (SAM) files were 
converted to Binary Alignment and Mapping (BAM) files 
using SAMtools [17]. Picard (http://picard.sourceforge.net/) 
was used to mark and remove the polymerase chain reaction 
duplicates detected from the BAM files. The Genome 
Analysis Toolkit (GATK) [18] was then used for base quality 
recalibration and local realignment around the potential 
indel sites. The UnifiedGenotyper [19] in the GATK was 
used in the final step for variant calling using a Bayesian 
model. Variants were filtered by three types of filtering 
methods: (1) HARD_TO_VALIDATE: MQ0 ≥4 and 
[(MQ0/(1.0 × DP)] ＞0.1; (2) QualFilter: QUAL ＜10; and 
(3) Additional: QUAL ＜30.0 || MQ ＜20.0 || DP ＜7.

Annotation of genetic variants 

We annotated variants using diverse tools and databases. 
The region information of variants (such as coding or intron 
regions and splice sites) was annotated using SnpEff [20]. 
Further, we predicted the functional effects of variations on 
genes (such as silent, nonsense, or missense SNPs) using 
SnpEff [20]. We also predicted whether an amino acid 
substitution significantly affects protein function (such as 
deleterious or tolerated SNPs) using SIFT [21]. In addition, 
we checked previously known SNPs using the dbSNP 
database [22]. We also checked clinical SNPs using the 
ClinVar database [23].

Analysis of depth of coverage in the diagnostic 
gene set

We extracted information for the positions of the 175 
diagnostic genes from the hg19 reference genome, which 
was downloaded from the UCSC genome [24]. Based on 
this, we analyzed the depth of coverage and mapped mean 
depth according to increasing sequencing depths using 
Samtools "mpileup" with default parameters [17].

Count analysis of diverse variants

We calculated counts of the number of diverse clinical 
variants including nonsense, missense, and deleterious 
SNPs in coding regions of the total genome and diagnostic 
genes using in-house scripts.

Results and Discussion
Effect of exome sequencing depth on the discovery 
of variants for clinical use 

To investigate the effect of exome sequencing depth on the 
discovery of clinically meaningful variants, we first sequenced 
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Fig. 1. Study overview. (A) Whole 
exome deep sequencing of whole 
blood DNA samples from ten breast 
cancer patients at ∼200× depth using
the Illumina GAII(x). (B) Generation of
ten datasets from 20× to 200×
depths. Each dataset was selected 
independent of the others. (C) Read 
mapping and variant calling with 
quality control. Variations such as 
indels and single nucleotide poly-
morphisms (SNPs) were annotated 
with related functional and regional 
information. (D) Various analyses of 
identified variants, such as number of
variants, read depth, and genomic 
coverage according to the mapped 
depths using both the whole genome 
and diagnostic genes.

the whole blood DNA samples from ten breast cancer 
patients using the Illumina platform GAII(x) at a high 
sequencing depth of ∼200× (Fig. 1A). The platform covers 
95% of the human exonic regions (http://www.gemomics. 
agilent.com). We then extracted data at depths of 20× to 
200× by random selection and shuffling (Fig. 1B). Next, we 
performed read mapping, local realignment, duplicate 
marking, and base quality recalibration for each sample (Fig. 
1C). Diverse variations such as SNPs, and insertions and 
deletions (indels) were called by using the GATK [16]. We 
also called function-related variations after the annotation of 
functional and regional information using various open 
databases and tools (Methods). Finally, we analyzed counts, 
positions, reading depths, and genomic coverage of the 
identified variations as a function of the sequencing depth 
using total or diagnostic gene sets (Fig. 1D).

We first checked the numbers of called SNPs in pro-
tein-coding (denoted as "coding SNPs") and total genomic 
regions (denoted as "total SNPs") of the platform in order to 
assess the effect of sequencing depth on the discovery of 
SNPs (Fig. 2A). As expected, the numbers of the identified 

total SNPs increased at higher average sequencing depths. 
For example, the median number of total SNPs for the ten 
samples gradually increased from 33,765 at 20× to 114,707 
at 200× (an increase of 80,942 for the total SNPs). However, 
the median number of SNPs in the coding regions increased 
more rapidly in the first half (an increase of 59,073 from 20× 
to 120×), and reached a plateau at an average sequencing 
depth of around 120×. The increase in the number of coding 
SNPs was significantly smaller after that (an increase of 827 
from 120× to 200×). This also means that the number of 
non-coding SNPs detected, both intronic and intergenic, 
increased rapidly after a depth of 120× was achieved. This 
phenomenon was more or less consistent across the 
sequencing data, from the first sample to the last. This trend 
was also preserved in the indel variants (Supplementary Fig. 
1). Further, the number of indels in the total region of the 
platform (denoted as "total indels") increased steadily, but 
the increasing ratio of indels in the coding regions ("coding 
indels") leveled off after a depth of 120× was achieved.

After functional annotation using the SnpEff database 
[20], we analyzed the numbers of functional SNPs (nonsense, 
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Fig. 2. Numbers of called functional 
single nucleotide polymorphisms of 
human genes according to sequencing
depths. (A) Numbers of called coding 
(blue) and total single nucleotide 
polymorphisms (SNPs) (red) with diffe-
rent sequencing depths: dashed lines 
are trend lines of means and their error
ranges are represented. Solid lines in 
the inner chart represents how num-
bers of SNPs are significantly different
from each own preceding. (B) The bar
chart illustrates the numbers of called
silent (blue), nonsense (orange), and 
missense (red) SNPs. (C) The bar chart
illustrates the numbers of called 
tolerated (blue) and deleterious (red) 
SNPs in the SIFT database. (B) and (C)
represent median values of the ten 
samples.

missense, and silent) while increasing the sequencing depth. 
The results indicate that the median number of missense 
SNPs detected in the ten samples increased from 6,015 to 
9,731 (Fig. 2B). However, the rate of increase was sharp in 
the first half, slowing significantly after 120×. We observed 
a similar trend for the nonsense SNPs as well. In addition, 
this phenomenon was also observed for the deleterious 
SNPs using the SIFT [21] (Fig. 2C). In summary, the number 
of deleterious SNPs detected, such as missense and 
nonsense, increased with the sequencing depth, but the ratio 
of this increase reduced significantly after 120×.

Mutations in splice sites are associated with many 
diseases [25-27]. Therefore, we next analyzed the number of 
SNPs detected near splice sites with respect to the sequence 
depth (Fig. 3). We found that the number of called SNPs 
increased with increasing depth. However, many of the SNPs 
were detected in intronic regions around the splice sites, 
about twice the number of those detected in exonic regions, 
when increasing the sequencing depth. The number of 

detected SNPs, though, was lowest at the splice sites. This 
might imply that the sequences of the exonic regions 
surrounding the splice sites are well conserved than those of 
the intronic regions. However, researchers who wish to 
detect susceptible SNPs in splice sites might have to 
sequence at depths of more than 120×. Similarly, all the 
variations reported in the dbSNP database were also more 
common in the intronic, rather than the exonic regions 
(Supplementary Fig. 2). 

To summarize, the number of deleterious SNPs and indels 
detected in the coding regions (which are widely used in 
clinical diagnostics) was only weakly increased a depths 
more than 120×. In other words, a sequencing depth of 
120× can be considered reasonable when using the exome 
capture sequencing technique to identify significant 
variations in diagnostic studies.

Exome sequencing depth for diagnostic genes

Next, we analyzed the genomic coverage and mean depths 
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Fig. 3. Numbers of single nucleotide 
polymorphisms (SNPs) near splice sites.
Median numbers of SNPs for the ten 
samples are depicted. Different colors
indicate increasing sequencing depths.

Fig. 4. Mean mapped depth and 
coverage of diagnostic genomic regions
according to sequencing depth. Lines 
indicate the coverage proportion of the
genomic regions of 196 diagnostic 
genes with specific minimum depths, 
according to the sequencing depths. 
Red line: genomic coverage ＞25×.
Bars indicate mean mapped depths 
(mean depth). 

for 175 diagnostic genes (Supplementary Table 1) with 
respect to the diverse depths used. These genes have been 
widely used for diagnostic, prognostic, and therapeutic 
purposes at the Seoul National University Hospital in Korea. 
Specifically, these diagnostic genes are a subset of genes 
from the exome dataset. The percentage of mapped 
sequences in the coding regions of the 175 genes was almost 
constant for each depth in the individual samples, although 
there were slight variations across the samples (Supple-
mentary Table 2). We further observed that the distributions 
of the average mapped depths between all human genes in 
the platform and the diagnostic genes were similar 
(Supplementary Fig. 3). Moreover, with increasing depths, 
as expected, the median average mean depth of the ten 
samples increased almost constantly from a depth of 13.3× 
to 125.1× (on average, an increase of 12.4× per depth) (bar 
charts in Fig. 4). In contrast, the coverage curves for the 
coding regions of the diagnostic genes followed logarithmic 
trends, regardless of the thresholds of the minimum read 

depths (line charts in Fig. 4). For example, based on the 
regions with more than 1× mapped depth, the coverage 
increased from 99.3% to 99.7% (0.4% increase) at 120× 
depth compared to that at 20×. However, the coverage 
increased by only 0.1% at a depth of 80× (totally, 200×). 
Similarly, at 25× minimum mapped depth, over 77.9% of the 
genomic regions were covered when 120× was used. 
Moreover, a 64.6% increase in coverage was observed in the 
first half (from 13.3% at 20× to 77.9% at 120×), whereas a 
7.6% increase was observed in the latter (from 77.9% at 
120× to 85.5% to at 200×). It is known that a 25× mapping 
depth is the minimum for detecting heterozygous alleles 
[28, 29]. In other words, the genomic coverage of the 
diagnostic genes was not increased significantly after 120×.

We next checked the number and positions of SNPs that 
have been detected in the early onset breast cancer 2 gene 
(BRCA2), one of the major risk factors in the development of 
this cancer [30, 31]. The results indicate that the read depths 
of SNPs in BRCA2 increased with increasing sequencing 
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Fig. 5. Mapped depths and positions 
of the called single nucleotide poly-
morphisms (SNPs) in BRCA2. (A) Map-
ped depths (y-axis) of called coding 
SNPs in BRCA2 (x-axis) according to 
increasing sequencing depths. The 
figure at the bottom indicates the exonic
regions of BRCA2. (B) Different views
of panel (A) based on increasing 
sequencing depths. The number of 
called SNPs is presented in parenthesis. 
For example, 120× (16) indicates that
16 SNPs were successfully called in 
the 120× dataset.

depths (Fig. 5A). However, most of the SNPs had been 
identified by the time 120× depth was reached, and no more 
were identified after 140× depth was used (Fig. 5B). Only 
mapped read depths increased with increasing sequence 
depths. Similar phenomena were also observed in the early 
onset breast cancer 1 gene (BRCA1) (Supplementary Fig. 4), 
another major risk factor in this cancer type [32]. 

Further, we validated our depth recommendation for 
diagnostic variant detection using exome sequencing. To this 
end, we analyzed the numbers of non-synonymous (NS) 
SNPs, splice site acceptor or donor site (SS), and coding indel 
(I) variants in the diagnostic genes as a function of the 
diverse depths used (Fig. 6). The numbers of NS/SS/I 
variants of all human genes in the platform increased with 
increasing sequencing depths (Fig. 6A). However, the 

numbers of NS variants in the diagnostic genes converged 
sooner; there was least increase in the NS variants after 60× 
was used (Fig. 6B). We analyzed the numbers of NS variants 
using the variations in the ClinVar database [23], which is 
well known for clinical variants. Although there was an 
increase in the numbers of NS clinical variants, the rate of 
increase was quite low after 120× was used (Fig. 6C). We 
also checked the variations related to breast cancer using 
only the clinical variants in the ClinVar database (Fig. 6D). 
The results indicate that all variations associated with breast 
cancer were detected at 140× depth, regardless of the 
sample. In summary, with exome capture sequencing 
technique, the most significant clinical variations can be 
detected at an average depth of 120×.

Finally, we measured the discovery rates of variants at 
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Fig. 6. Numbers of called non-synon-
ymous (NS)/splice site acceptor or 
donor site (SS)/coding indel (I) in the 
diagnostic gene set and the ClinVar 
database according to different se-
quencing depths. (A, B) Numbers of 
NS/SS/I per depth used in the human 
genome (A) or in the 175 diagnostic 
genes (B). (C) Numbers of NS for the 
diagnostic genes in the ClinVar database
per number of depth used. (D) Numbers
of variants in the genes associated with
breast cancer among the diagnostic 
genes in the ClinVar database. The 
x-axis represents increasing sequencing 
depths.

Fig. 7. Fraction of 21 validated single
nucleotide polymorphisms (SNPs) in 
the called SNP set according to diffe-
rent sequencing depths. The median 
numbers of called SNPs are depicted 
for the ten samples. Different colors 
indicate independent trials.

different sequencing depths using Sanger sequencing 
(Fig. 7). The results show that more than 90% variations 
were validated when 120×. Hence, we conclude that, using 
the exome capture sequencing technique, the most reliable 

variants are detected at an average depth of 120×.
In this study, we determined the effects of exome 

sequencing depth on the discovery of function-related 
diverse variants of human genes and diagnostic genes, 
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especially for clinical use. For this purpose, we investigated 
the exome deep-sequencing data for whole blood DNA 
samples obtained from ten breast cancer patients using an 
Illumina platform GAII(x) as a function of sequencing depth. 

The number of genomic variants identified using exome 
sequencing reached a plateau at an average sequencing depth 
of ∼120×, and this depth allowed detection of most 
variations in the human genes. The results were also 
consistent with a diagnostic gene set and were similar across 
samples. Considering the diverse costs and time related to 
generation, processing, and maintenance of sequencing 
data, this suggests that a feasible depth for clinically relevant 
exome sequencing is about 120×. These findings can be 
used to address important questions on the adequate depth 
for exome sequencing techniques for clinical use.

Supplementary materials

Supplementary data including two tables and four figures 
can be found with this article online at http//www. 
genominfo.org/src/sm/gni-13-31-s001.pdf.
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