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ABSTRACT

Purpose: Neutrophils are considered key effector cells in the pathogenic mechanisms of 
airway inflammation in asthma. This study assessed the activation status of neutrophils 
in adult asthmatics, and the therapeutic potential of FTY720, a synthetic sphingosine-1-
phosphate analog, on activated neutrophils using an in vitro stimulation model.
Methods: We isolated peripheral blood neutrophils (PBNs) from 59 asthmatic patients 
(including 20 aspirin-exacerbated respiratory disease [AERD] and 39 aspirin-tolerant asthma 
[ATA] groups). PBNs were stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) 
or lipopolysaccharide (LPS) and their activation status was determined based on reactive 
oxygen species (ROS) production, cell surface expression of CD11b, interleukin (IL)-8 and 
matrix metallopeptidase (MMP)-9 release. PBNs were primed with FTY720 to evaluate its 
anti-inflammatory action.
Results: In vitro PBN stimulation with fMLP or LPS induced a significant increase in ROS/
CD11b/IL-8/MMP-9 levels (P < 0.05 for all). In asthmatics, fMLP-induced ROS level was 
significantly correlated with values of forced expiratory volume in 1 second/forced vital 
capacity (r = −0.278; P = 0.036), maximal mid-expiratory flow (r = −0.309; P = 0.019) and 
PC20 methacholine (r = −0.302; P = 0.029). In addition, ROS levels were significantly higher 
in patients with AERD and in those with severe asthma than in those with ATA or non-
severe asthma (P < 0.05 for all). FTY720 treatment could suppress ROS/CD11b levels, and 
LPS-induced IL-8 and MMP-9 levels (P < 0.05 for all). Responders to FTY720 treatment had 
significantly higher neutrophil counts in sputum (P = 0.004).
Conclusions: Our findings suggest a useful in vitro PBN stimulation model for evaluating 
the neutrophil functional status and the therapeutic potentials of neutrophil-targeting 
candidates in asthmatics.
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INTRODUCTION

Asthma is a heterogeneous, respiratory disease with various endotypes that combine 
clinical phenotypes with a distinct pathological mechanism.1 To better understand the 
pathophysiology of asthma, studies have examined the functions of immune cells such as 
lymphocytes, mast cells, eosinophils and neutrophils in allergic inflammation, and targeted 
them for the development of novel therapeutics in asthmatics. Asthmatics with eosinophilic 
inflammation show favorable responses to corticosteroid therapy, while asthmatics with 
neutrophilic inflammation show poor responses to corticosteroid therapy.2 A specific 
treatment targeting for a specific endotype of asthma has been generally recognized as the 
most effective therapy in asthmatics.1,3

There is increasing evidence of a pathologic role of neutrophil-mediated inflammation and 
clinical benefits of neutrophil-targeting therapies in asthma.4,5 Neutrophilic asthma, which 
is defined by sputum neutrophil counts, shows distinct pathological features. Sputum 
neutrophil counts are associated with persistent airflow limitation and asthma severity in 
adult asthmatics.6,7 Neutrophil-mediated airway inflammation in severe asthma (SA) persists 
despite treatment with high-dose glucocorticoids.2 These findings strengthen the rationale for 
targeting neutrophils as an immunotherapeutic target for severe asthma. A number of ' anti-
inflammatory therapeutics such as C-X-C Motif Chemokine Receptor 2 (CXCR2) antagonists 
and anti-interleukin (IL)-17 receptor alpha monoclonal antibodies have been examined in 
non-eosinophilic asthma8,9; however, they do not appear to have significant therapeutic effects 
on asthma. Therefore, neutrophils are still of primary importance in the therapeutic strategy 
for severe asthma. Nevertheless, there is little information on who would benefit the most from 
neutrophil-targeting therapy. In a recent study, aberrant neutrophil processes such as autophagy 
and the neutrophil extracellular DNA trap enhanced the inflammatory responses of human 
airway epithelial cells and eosinophils in severe asthma.10,11 In addition, increased leukotriene B4 
generation due to impaired granulocyte function was noted in patients with aspirin-exacerbated 
respiratory disease (AERD) along with a positive correlation with platelet-adherent neutrophils.12

Here, we evaluated the functional status of neutrophils in asthmatics using an in vitro stimulation 
model of human peripheral blood neutrophils (PBNs) by measuring reactive oxygen species 
(ROS) production, CD11b cell surface expression, and the release of IL-8 and granular 
enzyme matrix metallopeptidase (MMP)-9. Along with changes in lung function and airway 
hyperresponsiveness, we compared neutrophil functional status according to the phenotype of 
asthma. Considering the multicellular effect of sphingosine-1-phosphate (S1P) signaling in airway 
inflammation, we also investigated the potential therapeutic benefit of FTY720, a S1P functional 
antagonist.13 S1P signaling is associated with airway responsiveness, bronchoconstriction and 
airway remodeling via the regulation of target cell proliferation in asthma.14,15 Moreover, S1P can 
further enhance neutrophil activation (i.e., Fcγ receptor-mediated calcium influx16 and N-formyl-
methionyl-leucyl-phenylalanine [fMLP]-induced ROS generation).17 Therefore, we hypothesized 
that FTY720 is a potential target for neutrophilic inflammation in adult asthmatic patients.

MATERIALS AND METHODS

Materials
S1P was purchased from Enzo Life Sciences, Inc. (Farmingdale, NY, USA). FTY720 (2-amino-
2-[2-(4-octyl-phenyl)-ethyl]-propane-1,3-diol hydrochloride), fMLP, lipopolysaccharides 
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(LPSs) and ethylenediaminetetraacetic were obtained from Sigma-Aldrich (St. Louis, MO, 
USA). 2′,7′-dichloroflourescin diacetate (H2DCFDA) was purchased from ThermoFisher 
Scientific (Waltham, MA, USA).

Study subjects
This study enrolled 59 asthmatic patients (20 AERD, and 39 aspirin-tolerant asthma [ATA] 
patients) from Ajou University Hospital (Suwon, Korea). Written informed consent was obtained 
from each subject and the study was approved by the Institutional Review Board of Ajou 
University Hospital (AJIRB-GEN-SMP-13–108). The clinical history and chest radiographs of all 
asthmatic patients were evaluated. Subjects underwent spirometry to record forced expiratory 
volume in 1 second (FEV1)% predicted value, forced vital capacity (FVC)% predicted value, FEV1/
FVC and maximal mid-expiratory flow (MMEF)% predicted value. Asthma was diagnosed based 
on recurrent episodes of wheezing, dyspnea, cough and evidence of airway hyper-responsiveness 
to methacholine (a decrease in FEV1 [%] of 20% on methacholine challenge test [PC20]).18 All 
of the subjects had been maintained on ICS and a long-acting β2 agonist to control their asthma 
symptoms according to the Global Initiative for Asthma guidelines.19 The severity of asthma 
and control status were defined according to the International Guidelines of the European 
Respiratory Society/American Thoracic Society.20 Aspirin hypersensitivity was identified using 
the L-lysine aspirin provocation test (Lys-ASA BPT).21 A diagnosis of AERD was established 
based on 1) the clinical history of hyper-reactivity against aspirin or other nonsteroidal anti-
inflammatory drugs and 2) the positive results to Lys-ASA BPT (a decrease in FEV1 [%] of more 
than 15% after the challenge). As a control group, asthmatic subjects who were able to tolerate 
to aspirin were classified as ATA. Subjects with comorbidities or using systemic corticosteroids, 
other immunosuppressants or biologics were excluded.

Atopy was identified as 1 or more positive reactions on skin prick test results.22 Serum total 
immunoglobulin E was measured using the ImmunoCAP system (ThermoFisher Scientific), 
with the range of detection 2-5,000 kU/L. Neutrophil and eosinophil counts in sputum were 
evaluated as described in a previous study.23

Isolation of PBN from asthmatic patients
Peripheral blood from all study subjects was collected into BD vacutainer® tubes containing 
acid citrate dextrose solution (BD Biosciences, Franklin Lakes, NJ, USA) and PBN isolation 
was processed within 2 hours after collection as described in a previous study.10 PBNs were 
resuspended in RPMI-1640 medium supplemented with 2% heat-inactivated fetal bovine serum, 
penicillin (100 IU/mL) and streptomycin (50 µg/mL) (all were obtained from Gibco, Grand 
Island, NY, USA). Cell viability (> 98%) was assessed using trypan blue exclusion assay (Sigma-
Aldrich). Cell purity (>95%) was assessed using flow cytometry based on CD11b expression.

In vitro PBN stimulation assay
Freshly isolated PBNs (5 × 105 cells/well) were stimulated with 1 µM fMLP (or 1 µM LPS) for 1 
hour at 37°C under 5% CO2. To examine the inhibitory action of FTY720 on PBN activation, 
PBNs were primed with 1 µM FTY720 for 10 minutes at 37°C under 5% CO2 and then 
stimulated with fMLP (or LPS) for 1 hour.

Measurement of ROS in PBNs
The ROS-sensitive dye H2DCFDA was added to the PBNs at a final concentration of 10 µM 
for 30 minutes in the dark at 37°C under 5% CO2. A gate of the single PBNs was set and the 
DCF fluorescence intensity of PBNs was measured by flow cytometry using a BD FACSCanto 

383https://e-aair.org https://doi.org/10.4168/aair.2019.11.3.381

Neutrophil Activation Status in Adult Asthmatics



II (BD Biosciences, East Rutherford, NJ, USA). To quantify the ROS production in PBNs, 
the mean fluorescence intensity (MFI) of the DCF signals from PBNs were recorded for 
statistical analysis.

Evaluation of CD11b expression on PBN
CD11b expression on PBNs was quantified by flow cytometric analysis. After stimulation, 
PBNs were stained with phycoerythrin-labeled anti-human CD11b (activation epitope) 
antibody (eBioscience Inc., San Diego, CA, USA) for 20 minutes, at room temperature. Cells 
were analyzed immediately by BD FACSCanto II (BD Bioscience) and at least 10,000 events 
were recorded for each condition. The CD11b+ cells were defined by comparing to the isotype 
control. Given the limited numbers of PBNs, we were only able to perform CD11b labeling on 
a limited number of subjects.

Measurement of inflammatory mediators
Cell supernatants were collected and stored at −20°C for later enzyme-linked immunosorbent 
assay (ELISA) analysis. IL-8 and MMP-9 levels were measured using ELISA, according to the 
manufacturer's instructions (R&D systems, Minneapolis, MN, USA).

Statistical analysis
Statistical analysis was performed using SPSS for Windows version 20.0 (SPSS Inc., Chicago, 
IL, USA) and GraphPad Prism 6.02 (GraphPad Software, San Diego, CA, USA). All analyses 
were performed at the 0.05 level, and 95% confidence intervals were two-sided intervals. 
Student's t test was used to compare the data for continuous variables; Pearson's χ2 or 
Fisher's exact tests were used for categorical variables. General linear regression analysis was 
performed to adjust for confounding factors, sex and age to compare ROS and cytokine levels 
between two groups (AERD vs. ATA, severe asthma vs. non-severe asthma). Paired t test was 
used to compare paired continuous variables. Pearson's correlation coefficient was used to 
identify the associations between continuous variables.

RESULTS

Clinical characteristics of the study subjects
The study enrolled 59 asthma patients. Table 1 summarizes their clinical characteristics. The 
mean age of the asthmatic patients was 49.53 ± 14.36 years and 64.41% were female. Atopy 
was observed in 68.97% of the patients. Subjects were stratified by disease severity and 
aspirin hypersensitivity. Patients with severe asthma showed significantly reduced pulmonary 
functions; lower baseline levels of FEV1% predicted value, FVC % predicted value, and 
MMEF % predicted value (P < 0.05 for all). The patients with AERD had a higher frequency of 
rhinosinusitis than those with ATA (77.78% vs. 50%, P = 0.044).

Functional evaluation of neutrophil status using an in vitro model
To examine the functional status of neutrophils in asthmatics, we isolated human PBNs, 
stimulated them with fMLP or LPS for 1 hour, and then measured biomarkers representing 
neutrophil functions (i.e., ROS production and CD11b cell surface expression on PBNs, IL-8 
[a pro-inflammatory cytokine] and MMP-9 [a granular enzyme] release). fMLP and LPS 
stimulation on PBNs significantly increased ROS production and CD11b, IL-8 and MMP-9 
levels (P < 0.05 for all, Fig. 1). Furthermore, the fold induction of ROS production after fMLP 
stimulation as compared to baseline was significantly associated with decreased MMEF 
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Table 1. Clinical characteristics of the study subjects
Clinical characteristics Asthma (n = 59) SA (n = 9) NSA (n = 50) P value  

(SA vs. NSA)
AERD (n = 20) ATA (n = 39) P value  

(AERD vs. ATA)
Demographics

Sex (female), No. (%) 38/59 (64.41) 3/9 (33.33) 35/50 (70) 0.044 13/20 (65) 25/39 (64.1) 0.590
Age (yr) 49.53 ± 14.36 56 ± 12.53 48.35 ± 14.47 0.143 53.85 ± 11.92 47.26 ± 15.15 0.076
Atopy (presence, %) 40/58 (68.97) 5/9 (55.56) 35/49 (71.43) 0.282 10/19 (52.63) 30/39 (76.92) 0.059
Total IgE 342.27 ± 352.41 413.78 ± 546.84 328.28 ± 307.65 0.660 297.11 ± 326.95 364.24 ± 366.46 0.512

Pulmonary function
FEV1 (% predicted) 91.02 ± 13.89 78.38 ± 21.52 93.04 ± 11.31 0.005 89.33 ± 17.58 91.91 ± 11.67 0.506
FVC (% predicted) 92.57 ± 11.97 84.64 ± 18.58 93.84 ± 10.26 0.042 92.81 ± 14.3 92.45 ± 10.75 0.914
FEV1/FVC 82.45 ± 8.59 77.94 ± 12.64 83.17 ± 7.69 0.110 79.56 ± 9.3 83.98 ± 7.9 0.062
MMEF (% predicted) 69.51 ± 23.5 52.03 ± 20.69 72.31 ± 22.87 0.022 66.6 ± 25.59 71.04 ± 22.52 0.498
PC20 (mg/mL) 5.22 ± 7.28 3.72 ± 6.88 5.38 ± 7.38 0.633 3.74 ± 6.22 5.94 ± 7.73 0.312

Sputum cell differential count (%)
Eosinophils 32.78 ± 32.42 41 ± 38.01 31.75 ± 32.2 0.598 27.77 ± 34.11 35.61 ± 31.85 0.494
Neutrophils 58.69 ± 32.81 57 ± 38.38 58.9 ± 32.75 0.915 65.83 ± 33.52 54.96 ± 32.55 0.360

Relevant comorbidities, No. (%)
Rhinosinusitis 33/56 (58.93) 7/9 (77.78) 26/47 (55.32) 0.190 14/18 (77.78) 19/38 (50) 0.044
Nasal polyps 15/20 (75) 1/1 (100) 14/19 (73.68) 0.750 9/12 (75) 6/8 (75) 0.704

Asthma phenotypes and severity were defined as in the Materials and Methods sections. The continuous data are presented as the means ± standard deviation. The 
dichotomous data are presented as numbers (%). The data were analyzed with Student's t test and Pearson's χ2 test. The values in bold indicate significant P value.
SA, severe asthma; NSA, non-severe asthma; AERD, aspirin-exacerbated respiratory disease; ATA, aspirin-tolerant asthma; IgE, immunoglobulin E; FEV1, forced 
expiratory volume in 1 second; FVC, forced vital capacity; MMEF, maximal mid-expiratory flow; PC20, a decrease in FEV1 (%) of 20% on methacholine challenge test.
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Fig. 1. In vitro PBN activation under fMLP or LPS stimulation. PBNs were isolated from asthmatics, stimulated under (A) fMLP stimulation or (B) LPS stimulation 
in 1 hour. The MFI of DCF fluorescence of PBNs and CD11b expression percentage were measured by flow cytometry; IL-8 and MMP-9 in the supernatants were 
measured by enzyme-linked immunosorbent assay. Data are presented as means ± standard deviation. P values were analyzed by paired t-test. 
fMLP, N-formyl-methionyl-leucyl-phenylalanine; LPS, lipopolysaccharide; PBN, peripheral blood neutrophil; IL, interleukin; MMP, matrix metallopeptidase; ROS, 
reactive oxygen species.



% (r = −0.309; P = 0.019), decreased FEV1/FVC ratio (r = −0.278; P = 0.036), and increased 
bronchial hyper-reactivity to methacholine (r = −0.302; P = 0.029) (Fig. 2).

Neutrophil functional status according to the phenotype of asthma
Next, we stratified the patients according to the phenotype and then compared the functional 
status of neutrophils. ROS production with simulation was further increased in asthmatics as 
the symptoms got worse (Table 2). fMLP-induced ROS production in the severe asthma group 
was significantly higher than that in the non-severe asthma group (P = 0.011). AERD patients 
showed significantly higher ROS production stimulated by both fMLP and LPS than ATA 
patients (P < 0.01 for all). Subjects with uncontrolled asthma had significantly increased ROS 
production under LPS stimulation compared to subjects with partly controlled or controlled 
asthma (P = 0.027, Supplementary Table S1).

Evaluation of the therapeutic potential of FTY720 using an in vitro model
To examine the clinical relevance of this in vitro PBN stimulation model for the evaluation 
of the therapeutic potential of FTY720, we compared the effects of FTY720 on the fMLP- 
(and LPS) stimulated neutrophil functions. ROS production and CD11b surface expression 
induced by fMLP or LPS stimulation were significantly decreased in the presence of FTY720 
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Fig. 2. Correlations of PBN-derived ROS production with the severity of airway obstruction and bronchial hyper-reactivity. PBNs from asthmatics were stimulated 
with fMLP and measured for the DFC fluorescence intensity. Correlations of ROS and (A) FEV1/FVC; (B) MMEF (%) predicted values; (C) PC20. P values were 
analyzed by Pearson correlation coefficient analysis. 
FEV1, forced expiratory volume in 1 second; FEV1/FVC ratio, a ratio of forced expiratory volume in 1 second to forced volume vital; MMEF, maximal mid-expiratory 
flow; PC20 methacholine, methacholine provocative concentration causing a 20% drop in FEV1; ROS, reactive oxygen species; MFI, mean fluorescence intensity.



(P < 0.05 for all, Fig. 3). LPS-induced IL-8 and MMP-9 levels were also significantly decreased 
in the presence of FTY720 (P < 0.05, Fig. 3), while the inhibitory effect of FTY720 on fMLP-
mediated IL-8 and MMP-9 release did not reach a statistical significance (Fig. 3). To compare 
the clinical features of responders and non-responders to the FTY720 treatment, asthmatic 
patients were stratified by the reduction ratio of ROS production in the presence of FTY720. 
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Table 2. PBN-derived ROS production under stimulation according to the phenotype of asthma
Stimulation SA (n = 9) NSA (n = 49) P value*  

(SA vs. NSA)
Asthma (n = 58) AERD (n = 20) ATA (n = 38) P value*  

(AERD vs. ATA)
fMLP stimulation

Con 1,642.33 ± 1,673.77 1,292.9 ± 808.57 0.151 1,347.12 ± 979.81 2,031.85 ± 1,399.63 986.74 ± 293.6 < 0.001
fMLP 3,235.44 ± 2,868.46 2,059.61 ± 806.32 0.011 2,242.07 ± 1,373.59 3,073.9 ± 1,935.96 1,804.26 ± 641.18 0.001
fMLP + FTY 2,491 ± 1,947.11 1,699.79 ± 681.63 0.030 1,824.72 ± 1,008.1 2,433.11 ± 1,430.3 1,520.53 ± 507.75 0.002

LPS stimulation
Con 1,642.33 ± 1,673.77 1,292.9 ± 808.57 0.151 1,347.12 ± 979.81 2,031.85 ± 1,399.63 986.74 ± 293.6 < 0.001
LPS 2,541.38 ± 2,262.17 1,758.19 ± 897.58 0.100 1,883.5 ± 1,220.37 2,800.07 ± 1,696.19 1,527.06 ± 741.39 0.002
LPS + FTY 1,944.5 ± 1,969.66 1,498.95 ± 639.46 0.189 1,570.24 ± 961.04 2,329.07 ± 1,482.62 1,275.14 ± 395.82 0.001

Data are presented as means ± standard deviation of the mean fluorescence intensity values.
SA, severe asthma; NSA, non-severe asthma; AERD, aspirin-exacerbated respiratory disease; ATA, aspirin-tolerant asthma; Con, mock-treated cells; fMLP, 
N-formyl-methionyl-leucyl-phenylalanine, LPS, lipopolysaccharide; FTY, FTY720.
*P value was calculated by general linear regression analysis. The values in bold indicate significant P values.
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Fig. 3. Inhibitory action of FTY720 on neutrophil activation in asthmatics. PBNs were isolated from asthmatics, treated with FTY720 and stimulated under (A) 
fMLP stimulation or (B) LPS stimulation in 1 hour. P values were analyzed by paired t test. 
fMLP, N-formyl-methionyl-leucyl-phenylalanine; LPS, lipopolysaccharide; PBN, peripheral blood neutrophil; IL, interleukin; MMP, matrix metallopeptidase; ROS, 
reactive oxygen species.



Responders were defined as patients who showed more than 10% ROS reduction after the 
FTY720 treatment. As shown in Table 3, the sputum neutrophil counts were significantly 
higher in responders than in non-responders (P = 0.004). There were no significant 
differences in % of FTY720 responders according to the phenotype of asthma such as aspirin 
hypersensitivity, the disease severity and the control status (P = 0.502; P = 1.000; P = 0.791, 
Table 3). However, degree of increment of ROS production under fMLP stimulation was 
significantly decreased with FTY720 treatment (Supplementary Table S2).

DISCUSSION

Although the clinical relevance of neutrophilic inflammation to the phenotype of severe 
asthma is increasing, the functional status of neutrophils in asthmatic airway remains 
insufficiently understood. In the present study, we assessed the functional status of 
neutrophils using an in vitro PBN stimulation model along with clinical parameters of adult 
asthmatics and evaluated the therapeutic potential of FTY720 using an in vitro model.

Sputum neutrophil count allows for the evaluation of neutrophil numbers in the airway 
lumen and is associated with poor asthma control. 6,24 However, it's difficult to evaluate 
pre-activated or primed neutrophils in peripheral blood homing to the lungs and their 
contribution to exacerbating the airway inflammation. Consequently, we hypothesized 
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Table 3. Clinical characteristics of responders and non-responders to the FTY720 treatment
Clinical characteristics Responders (n = 40) Non-responders (n = 17) P value
Demographics

Sex (female), No. (%) 30/40 (75) 8/17 (47.1) 0.043
Age (yr) 48.7 ± 14.7 48.8 ± 14.6 0.979
Atopy (presence, %) 26/40 (65) 12/14 (85.7) 0.454
Total IgE 337.3 ± 354.7 331.9 ± 362.1 0.960

Pulmonary function
Baseline FEV1 (% predicted) 91.5 ± 13.3 89.8 ± 16.2 0.678
Baseline FVC (% predicted) 93.2 ± 11.4 91.1 ± 14 0.557
Baseline FEV1/FVC 82.3 ± 7.6 83 ± 11.1 0.796
PC20 (mg/mL, methacholine) 5.2 ± 7.2 5.5 ± 7.9 0.881

Sputum cell differential count (%)
Eosinophils 28.4 ± 32.4 47.1 ± 29.7 0.124
Neutrophils 67.7 ± 29.7 33.4 ± 26.9 0.004

Asthma phenotype
Aspirin hypersensitivity 0.502

AERD 13/37 (35.1) 6/17 (35.3)
ATA 27/37 (73.0) 11/17 (64.7)

Severity 1.000
SA 6/40 (15.0) 3/17 (17.6)
NSA 34/40 (85.0) 14/17 (82.4)

Control status by GINA guideline, No. (%) 0.791
Controlled 20/40 (50.0) 8/17 (47.1)
Partly controlled 15/40 (37.5) 8/17 (47.1)
Uncontrolled 5/40 (12.5) 1/17 (5.9)

Responders were defined as patients who show ≥10% reactive oxygen species reduction in the presence of 
FTY720 under N-formyl-methionyl-leucyl-phenylalanine stimulation. Asthma control status and inflammatory 
subtype of asthma were defined as described in Materials and Methods section. The data are presented as means 
± standard deviation for continuous variables and percentage for categorical variables. The data were analyzed 
with Student's t-test and Pearson's χ2 test.
FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; PC20, a decrease in FEV1 (%) of 20% on 
methacholine challenge test; AERD, aspirin-exacerbated respiratory disease; ATA, aspirin-tolerant asthma; SA, 
severe asthma; NSA, non-severe asthma.



that biomarkers of primed neutrophils in an in vitro model using PBNs of asthmatics would 
serve as an early read-out for assessing neutrophilic airway inflammation. Stimuli such 
as the neutrophil chemotactic factor fMLP and a bacterial endotoxin, LPS, can effectively 
induce ROS production in human PBNs.25,26 ROS is a key signaling molecule that stimulates 
pro-inflammatory cytokine production and promotes allergic airway inflammation 
through airway smooth muscle contraction and bronchial hyperresponsiveness.27-29 In the 
present study, ROS production under fMLP stimulation increased in adult asthmatics in 
association with the disease severity, particularly in patients with severe asthma, although 
the number of severe asthma patients is not enough to draw conclusion. This could be 
explained by significant correlations between fMLP-induced ROS production with decreased 
lung function, and increased bronchial hyper-reactivity to methacholine. These results 
are consistent with those of previous studies that found a negative correlation between 
lung function parameters and sputum neutrophil counts in asthmatics.6,24 These findings 
demonstrate that measurement of PBN-derived ROS production may be a useful in vitro model 
for assessing the functional status of neutrophils in severe asthma.

AERD has been considered the severe form of adult-onset eosinophilic asthma, which is 
comorbid with chronic rhinosinusitis and nasal polyps.30 Due to increased baseline levels 
of prostaglandin D2 and cysteinyl leukotrienes,31 both eosinophils and mast cells are 
targeted as the major effector cells in the pathogenesis of AERD. However, little is known 
about the effector function of neutrophils in the airway inflammation in AERD patients. 
Increased neutrophil chemotactic activity in serum has been noted during early and late 
asthmatic response after Lys-ASA BPT in AERD patients.32 The production of leukotriene 
B4, a chemoattractant to neutrophils, is also increased in AERD patients, similar to 
leukotriene E4,33 which can be explained by impaired granulocyte functions leading to 
leukotriene B4 production.12 In addition, we compared sputum inflammatory cell profiles 
among the 4 subtypes of AERD and found high neutrophil counts as well as eosinophils in 
sputum samples of subtypes 1 and 2 (having more severe clinical outcomes), suggesting 
that neutrophils are involved in the severity of airway inflammation in AERD.34 In the 
present study, when we compared the functional status of PBNs between the AERD and 
ATA groups in an in vitro, more activated neutrophils were noted in the AERD group than in 
the ATA group (i.e., the increased fold induction of ROS production after fMLP stimulation 
as compared to baseline). However, we could not find direct correlations between the ROS 
and cytokine production under stimulation with the % fall of FEV1 after Lys-ASA BPT. Taken 
together, these results suggest that the in vitro PBN stimulation model described herein may 
be useful for evaluating the functional status of neutrophils in AERD patients.

The functional status of neutrophils can be further examined by measurement of 
inflammatory cytokines and cytolytic granular enzymes released from neutrophils. IL-8 is a 
key cytokine in neutrophil recruitment, survival and inflammation,35 and plays an important 
pathogenic role in airway inflammation of asthma; IL-8 levels are increased in both 
bronchoalveolar lavage fluid (BALF) and induced sputum of asthmatics.36 Increased levels 
of granular enzymes, such as MMP-9 and myeloperoxidase (MPO), have also been found in 
the BALF and sputum of asthmatics in correlation with asthma severity.37,38 The functional 
relevance of MPO seems to be similar to that of MMP-9; the levels were increased in both the 
BALF and sputum of asthmatics and negatively correlated with lung functions.39 Neutrophil 
elastase (NE) may contribute to the development of asthma by inducing epithelial damage 
and enhancing bronchial hyper-reactivity.40 Elevated NE levels have also been observed 
during asthma exacerbation and negatively correlated with FEV1 in asthmatics.41 In the 
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present study, we measured the pro-inflammatory cytokine (IL-8) and 3 cytolytic granular 
enzymes (MMP-9, MPO and NE) using the in vitro PBN stimulation model. Asthmatic patients 
showed an increased release of IL-8 and MMP-9 under stimulation. However, we failed to 
measure MPO and NE because the baseline level of MPO was too high to compare, while 
the baseline level of NE was less than the detection limit, therefore, they were excluded in 
comparisons. The expression of CD11b, a neutrophil activation marker, was also increased 
under stimulation, although the number of study subjects was limited. These findings 
suggest that measurement of IL-8 and MMP-9 released from PBNs are practical parameters to 
evaluate neutrophil functions using in vitro stimulation models.

The functional status of neutrophils could also be used for evaluating therapeutic potential of 
neutrophil-targeting candidates. In this study, FTY720 was targeted due to its antagonizing 
effect on S1P signaling, which may represent a novel therapeutic candidate for the 
management of asthma.13-15 S1P signaling can directly effect on neutrophil functions via S1P 
receptor type 1 (S1PR1)-mediated ROS generation under fMLP stimulation.17 Previously, we 
reported an altered sphingolipid metabolic pathway in AERD (i.e., increased serum level of 
S1P during Lys-ASA BPT in AERD patients).42 Therefore, we hypothesized that the inhibitory 
action of FTY720 on S1P signaling could be a biological target for controlling neutrophilic 
inflammation to attenuate neutrophil activation in asthmatics. In the present study, when 
we examined the therapeutic potential of FTY720 using the in vitro PBN stimulation model, 
the activated status of neutrophils was decreased significantly by FTY720 in the aspects of 
ROS production, CD11b expression, and IL-8/MMP-9 release. These findings suggest that 
FTY720 may modulate neutrophilic airway inflammation by reducing ROS production and 
inflammatory cytokine/cytolytic granular enzyme release. In addition, when we compared the 
clinical features between responders and non-responders to FTY 720 treatment, a favorable 
response was suggested in patients with higher sputum neutrophil counts. These inhibitory 
actions of FTY720 on ROS production seem more prominent in patients with AERD. Degree 
of increment of ROS production under fMLP stimulation was significantly decreased with 
FTY720 treatment. Taken together, these results suggest that modulation of ROS production 
is the major anti-inflammatory mechanism of FTY720 on activated neutrophils in asthmatic 
airway. Further interventions are essential to evaluate whether FTY720 may serve as a 
therapeutic option for patients with severe asthma or AERD.

The present study has limitations. First, we used neutrophil-enriched granulocytes with cell 
purity > 95% for examination of the functional status of neutrophils; however, this mixture 
may contain eosinophils (especially in atopic asthmatics). Mixed populations of eosinophils 
and neutrophils may have different in-vitro characteristics than pure neutrophils. Secondly, 
we could not detect NE, within 1 hour of stimulation, a biomarker to represent the effector 
functions of neutrophil enhancing epithelial damage and bronchial hyper-reactivity. Despite 
the limitation, ROS measurement after 1 hour stimulation would be appropriate for clinical 
utility. Thirdly, the detail signaling mechanism of FTY720 on the neutrophil function was not 
fully examined. Further studies are required to better understand the therapeutic effects of 
FTY720 on neutrophilic inflammation in asthmatics.

In conclusion, this study demonstrated that the activated status of neutrophils in adult 
asthmatics, particularly in severe asthma and AERD. The in vitro PBN stimulation model 
described herein may be useful for assessing the functional status of neutrophils, 
predicting the severity of airway inflammation, and screening potential therapeutics for 
asthmatic patients.
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