
Review Article
Role of Cancer-Associated Fibroblast in Gastric Cancer
Progression and Resistance to Treatments

In-Hye Ham,1 Dagyeong Lee,1,2,3 and Hoon Hur 1,2,3

1Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
2Brain Korea 21 Plus Research Center for Biomedical Sciences, Ajou University, Suwon, Republic of Korea
3Department of Biomedical Science, Graduated School of Ajou University, Suwon, Republic of Korea

Correspondence should be addressed to Hoon Hur; hhcmc75@ajou.ac.kr

Received 28 February 2019; Accepted 23 May 2019; Published 9 June 2019

Guest Editor: Yang Ge

Copyright © 2019 In-Hye Ham et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Although the survival of gastric cancer (GC) patients has gradually improved, the outcomes of advanced GC patients remain
unsatisfactory despite standard treatment with conventional chemotherapy or targeted agents. Several studies have shown that
cancer-associated fibroblasts (CAFs), a major component of tumor stroma in GC, may have significant roles in GC progression and
resistance to treatments. CAFs are a major source of various secreted molecules in the tumor microenvironment, which stimulate
cancer cells and other noncancerous components of GC. Surprisingly, these factors could be involved in gastric carcinogenesis.
Cytokines, including interleukin-6 and interleukin-11, or growth factors, such as fibroblast growth factor produced from CAFs,
can directly activate GC cells and consequently lead to the development of an aggressive phenotype. Galectin-1 or hepatocyte
growth factor can be involved in CAF-derived neovascularization in GC. In addition, recent studies showed that CAFs can affect
tumor immunity through M2 polarization of tumor-associated macrophages. Finally, the current study aimed to introduce several
inhibitory agents and evaluate their suppressive effects on CAFs in patients with GC progression. However, further studies are
required to evaluate their safety and select appropriate patients for application in clinical settings.

1. Introduction

Gastric cancer (GC) is one of themost commonmalignancies
worldwide and is a major cause of cancer-related mortality
[1]. The standard treatment for GC without distant metas-
tasis is resection of the stomach and proper lymph node
dissection, and postoperative systemic chemotherapies are
recommended for stage II or III [2, 3]. Despite standard
treatment for patients with resectable GC, patients with
advanced stage GC still show poor prognosis; therefore, the
5-year overall survival rate of patients with stage III was
about 20%–40% [4–6]. Meanwhile, the therapeutic option
for GC patients with distant metastasis (stage IV) or patients
with recurrence after resection is systemic chemotherapy
with multidrug regimens, but the outcomes are poor with
a reported mean survival time of about 10 months or less
[7–10]. Recently, a variety of molecularly targeted agents

has been proposed to enhance the survival rate. However,
most clinical trials either have not shown a survival benefit,
except for trastuzumab and ramucirumab as combined agents
with palliative chemotherapy, or are still ongoing [11]. The
limited benefit of treatments for GC is increasingly attributed
to the tumor stroma, including extracellular matrix (ECM),
fibroblasts, immune cells, and microvasculature, as it is well
known that GC has a profuse, noncancerous proportion that
contributes to GC progression [12–14].

Among these various components in the tumor stroma,
cancer-associated fibroblasts (CAFs) have been suggested to
play a key role in tumor development [15]. CAFs remark-
ably influence the tumor microenvironment (TME) via the
secretion of cytokines, chemokines, and growth factors [16,
17]. Those secreted proteins enhance cellular migration, alter
the metabolism of epithelial tumor cells [18, 19], control the
metabolic flexibility of cancer cells [20], and play a significant
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role in the development of resistance to therapeutic agents
[21, 22]. The function of CAFs in cancer progression has
been explored in various in vitro experimental models using
CAFs isolated from primary human solid tumor tissues [23].
Usually, the cancer cells were cocultured with CAFs, which
have shown increased migration, invasion, and survival
ability, and tumorigenesis of cancer cells was compared with
those cocultured with normal fibroblasts [23–25]. Not only
in vitro but also in vivo experiments have confirmed that
CAFs advance tumor growth and promote metastasis of
cancer cells when coinjected into murine xenograft models
[23, 26]. In spite of these results, the unique makers of CAFs
and main contributors according to the type of cancer have
not been clarified. There have been several well-established
indicators of CAFs, such as platelet-derived growth factor 𝛼
(PDGRF𝛼), PDGFR𝛽, and alpha-smooth muscle actin (𝛼-
SMA) [15]. However, these markers are typically expressed
only in a fraction of fibroblasts within the tumor and are
not specific to CAFs. In addition, CAF-derived contributors
involved in cancer progression could differ depending on
the type of cancer, because they have different carcinogenesis
and progression mechanism. Therefore, the mechanisms of
communication between CAFs and specific types of cancers
need to be investigated.

Based on those characteristics of CAFs in solid cancers,
previous studies have shown that the histologic accumulation
of CAF in various types of cancers (colon, esophagus, breast,
and liver cancer) could be a poor prognostic maker [27–30].
In GC, type IV of traditional Borrmann’s classification has a
profuse fibrotic stroma showing poor prognosis due to high
recurrence in the peritoneum [31–33]. Those clinical studies
have implied that CAFs accumulated in GC tissues might
enhance the progression and metastasis of GC. In addition,
the high throughput gene expression profiling in GC tissues
revealed that the tumors with a high expression of “stroma
signature” genes contained a high proportion of fibrotic
stroma including CAFs and could be a surrogate marker for
predicting the prognosis of GC patients [34]. Our previous
study also investigated if the accumulation of fibroblast in
a specific subtype of GC, signet ring cell carcinoma, was
related to the clinical outcomes [35]. In this study, a higher
proportion of CAFs, which was evaluated by immunohisto-
chemical staining for 𝛼-smooth muscle actin and Masson’s
trichrome staining for stromal collagen, was significantly
related to poor prognosis than a lower proportion of CAFs.
Taken together, it would be easily assumed that CAFs have
a big impact on the GC progression, due to their direct
effects on cancer cells or indirect effects on other ecosys-
tems within malignant tumors. The former could induce
the stemness or metastatic potency of cancer cells through
paracrine or direct contact, while the latter could control non-
cancerousmicroenvironments such as angiogenesis or tumor
immunity.

To explore the function of CAFs in malignant tumors
through experimental models, CAF should be steadily iso-
lated from bulky tumors. To date, several methods to isolate
fibroblasts fromGC tissues have been established and isolated
fibroblasts were confirmed by expression of specific mark-
ers [35–38]. For example, the fresh tissues harvested from

patients were immediately moved into a clean bench and
were cut into small pieces in a culture dish. After mincing
with scalpels, a coverslip was placed over the tissue forming
a sandwich. Fibroblasts usually outgrew in a monolayer
and were subsequently collected [35]. However, because
those cells were not immortalized, most researchers used
the fibroblasts with low passage number for subsequent
experiments.

We aimed to provide an update on the mechanism of
CAF-induced GC progression in the view of tumorigenesis,
invasion and metastasis, angiogenesis, and tumor immu-
nity. We also aimed to introduce the potential therapeutic
strategies that can target the effect of CAFs on the GC
cells.

2. Origin of CAFs Accumulated in GC

Although CAFs are the predominant cell type within the
tumor stroma of various solid cancers, the origin of CAFs
is not fully understood. Previous studies have suggested
some candidates for the origin of CAFs such as fibroblast
in normal tissues [63], specific cells around vessels such as
pericytes and vascular smooth muscle cells [64], endothelial
cells [65], and bone marrow-derived stem cells [66]. In GC,
a pericyte was suggested as one of the origins of CAFs [67].
Here, GC cells could secrete exosomes, which could induce
the transition of pericytes into CAFs, but this experimental
result was not proven in GC patients’ samples. Bonemarrow-
derived stem cells have also been proposed as the origin
of CAFs in GC [68]. This result was proven in the tissues
harvested from patients with secondary GC who have pre-
viously undergone bone marrow transplantation for various
hematologic diseases. Another study insisted that CAFs could
be induced from normal resident fibroblasts of the stomach
by stimulation of TGF-𝛽 derived from the scirrhous GC cells
[69].

However, in other solid tumors such as those of the head
and neck, breast, and pancreas, recent studies show that CAFs
contained in one tumor were heterogeneous, presenting
different gene expression patterns and a variety of functions
[21, 70, 71]. These results imply that CAFs in GC may
also include various subtypes that originated from multiple
sources, and it would be important to determine which
subtype has a crucial role in GC progression. To the best of
our knowledge, no study has evaluated the heterogeneity of
CAFs inGC; hence, it should be investigated in future studies.

3. Role of CAF in Gastric Carcinogenesis

Gastric carcinogenesis is a very complicated process. Because
high-throughput genetic profiling in GC tissues did not
reveal driver mutation during gastric carcinogenesis [72],
the role of environmental factors such as infection and
food could be emphasized [73]. Most studies have pro-
posed that those factors could enhance precancerous inflam-
mation in the gastric mucosa, which can lead to GC
[74, 75].

Although the role of CAF during gastric carcinogenesis
has been rarely reported, several candidates derived from
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fibroblasts have been suggested as the contributors to the
occurrence of chemically induced GC in murine models
[76, 77]. In one of those models, GC developed in Lewis
rats provided with drinking water with N-methyl-N’-nitro-
N-nitrosoguanidine [77]. During carcinogenesis in this rat
model, SPARC-stained fibroblasts appeared in the interstitial
portion of early initiation stage of stomach tumors in the test
rat; however, this was not observed in the control rat. These
results suggested that SPARC-expressing fibroblasts probably
contributed to GC development. Hiroto K et al. studied
the role of CAFs on carcinogenesis using N-methyl-N-
nitrosourea- (MNU-) induced gastric tumorigenesis mouse
model [76]. In this study, compared with normal gastric
tissues, IL-6 expression in GC was significantly increased,
and IL-6 knockout mouse had a lower incidence of MNU-
induced GC than wild-type mice.These results imply that IL-
6 induced from CAFs has an important role during gastric
carcinogenesis.

4. Role of CAF in GC Invasion and Metastasis

The invasion and metastasis of cancer cells have long been
the causes of death and great challenges for GC patients
even after undergoing complex clinical treatments [78]. The
poor prognosis and low survival rate of GC patients are
mainly due to metastasis [45], and almost 60% of GC
deaths are due to peritoneal recurrence [50]. However,
the specific mechanisms of GC metastasis have not been
clarified.

The epithelial-mesenchymal transition (EMT) is a bio-
logical process by which epithelial cells lose their cell
polarity and cell-cell adhesion, gain migratory and invasive
capacity, and become resistant to apoptosis. Moreover, the
EMT increases the production of components of ECM
and gains the invasive properties to become mesenchy-
mal stem cells, which play an important role in the ini-
tiation of metastasis during cancer progression [47]. In
GC, high-throughput molecular analysis revealed that the
expression of EMT gene signature in primary GC was
significantly related to poor prognosis [79]. As described
earlier, because CAFs were known to advance tumor cell
metastasis and invasion by overexpression of a variety
of factors that can enhance EMT phenomenon [39], the
exploration of communication mechanism between GC cells
and CAFs could be crucial in the field of GC metastasis
research.

One study described that the effect of CAFs on increased
migration of GC cells was more significant than nor-
mal tissue-associated fibroblasts. This study suggested that
microRNA-106b is a CAF-specific maker and has a cru-
cial role in the reinforcement of phosphatase and tensin
(PTEN) signaling in GC cells [40]. While this study did
not indicate the exact communicators between GC cells
and CAFs, Wu X et al. [41] showed that GC-derived CAFs
secrete significant quantities of IL-6, which can induce
EMT phenomenon and increase migration of GC cells
through activation of Janus kinase 2/signal transducers and
activators of transcription (JAK2/STAT3) pathway in GC
cells. In addition, they showed that deprivation of IL-6 by

inhibiting the JAK/STAT3 pathway with a specific inhibitor
markedly diminishes these phenotypes in GC cells induced
by CAFs. Another secreted factor such as fibroblast growth
factor 9 (FGF-9) could be suggested as a communicator
between GC cells and CAFs [42]. This study showed that
the CAFs isolated from GC tissues could secrete FGF-9 into
the extracellular area under the regulation of miR-214 and
the secreted FGF-9 could induce EMT in GC cells. CAF-
derived exosomes could be a key player in the communi-
cation between GC cells cultured from scirrhous type GC,
which is a subtype of GC with abundant fibrotic stroma
[37] because exosomes are cell-derived vesicles containing
functional biomolecules that can be transferred to recipient
cells [43]. In particular, CD9 is a specific marker of exosomes
that originated from CAFs, and CD9 exosomes from CAFs
could increase the migration and invasion ability of GC
cells.

Taken together, the evidence suggests that CAFsmay play
a pivotal role in the migration and invasion of GC cells.
In addition, other factors such as stromal derived factor 1
(SDR1), CXCL12, and interleukin 11 have been suggested as
CAF-derived inducers for migration and invasion of GC
[36, 38, 44, 46, 48, 49, 80, 81], and their mechanisms are listed
in Table 1. The mechanisms associated with CAF-induced
motility of GC cells could be a novel target in the treatment
of GC.

5. Role of CAF in Angiogenesis of GC

Pathological angiogenesis is a hallmark of cancer [82].
Growth, invasion, and metastasis of malignant tumors
depend on neovascularization that is controlled by proan-
giogenic and antiangiogenic elements [83, 84]. Past studies
have shown the positive correlation between the expression
of factors related to tumor angiogenesis and poor clinical
outcomes of GC patients [85, 86]. Moreover, antiangiogenic
agent, a monoclonal antibody VEGFR2 antagonist, is one of
the few targeted agents showing clinical benefit in metastatic
GC patients [87]. A plethora of factors have been proposed
as contributors to angiogenesis, but major factors should be
clarified before administering novel targeted agents to block
GC angiogenesis.

Increasing evidence has shown that chemokine secretion
by CAFs may support the recruitment of bone marrow-
derived angiogenic cells [58]. CAFs may be a major source of
angiogenic factors [88]. In GC, galectin-1 [89] and hepatocyte
growth factor (HGF) [90] have been proposed as CAF-
derived secretory proteins, which contribute to GC angio-
genesis. Galectin expression in CAFs was positively related
to increased expression of endothelial cell marker, CD31 [89].
Ding X et al. [90] discovered that the phosphorylation of
Akt and ERK1/2 was increased in GC cells treated with HGF
and cocultured with CAFs. Both Akt inhibitors and ERK1/2
inhibitors reduced the angiogenic and vasculogenic abilities
of HGF. However, these results have been confirmed using
an in vitro angiogenesis assay (tube formation assay). To
elucidate the correlation between CAFs and GC angiogen-
esis, the inhibitory effects of CAF-derived proteins on GC
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angiogenesis should be investigated in GC animal models for
clinical application.

6. Role of CAF in GC Resistance
to Chemotherapy

Chemotherapies for GC have shown some clinical effects;
however, some patients still show progression and recurrence
after chemotherapy in clinical settings, and there are many
obstacles to overcome this issue. One of the commonly
reported reasons for failed chemotherapy in clinics is the
occurrence of drug resistance. Unfortunately, the under-
lying mechanism of multidrug resistance in GC remains
unclear.

Previous studies evaluating chemotherapy resistance have
focused on the tumor microenvironment. In particular,
cancer cell–ECM interactions, CAF–ECM adhesion, and
cytokine or chemokine-mediated signaling pathways have
been considered as TME-related resistance to chemotherapy
[91, 92]; CAFs may have a major role in those mechanisms.
CAFs have been confirmed to regulate chemoresistance by
secreting cytokines, including stromal cell-derived factor-1𝛼,
IL-6, and IL-7 [93–95], and may also increase intratumoral
interstitial fluid pressure, thus indirectly inhibiting the uptake
of anticancer drugs [96]. However, the role of CAF in
chemoresistance has not been clarified.

Only one study was published describing that CAFs
secreting IL-11 could contribute to resistance to com-
bined chemotherapy regimens in GC cells by activating
gp130/JAK/STAT3/Bcl signaling pathway [97]. Recently, our
group investigated the GC CAF-specific secretory protein
involved in chemoresistance [98]. Through the analysis of
transcriptome between fibroblasts from paired normal gas-
tric and GC tissues, IL-6 was suggested as a CAF-specific
cytokine. In addition, transcriptome data and immunohis-
tochemical staining for GC tissues revealed that IL-6 was
usually expressed in the fibrotic stromal cell. CAF-derived
IL-6 could induce resistance to 5-FU or cisplatin in various
experimental models, such as in vitro and in vivo xenograft,
and tocilizumab, a monoclonal antibody that inhibits the
binding of IL-6 to its receptor, effectively suppressed the
development of drug resistance. If those results were applied
in the clinical setting, it could have prevented the occurrence
of chemoresistance in GC patients.

7. Role of CAF in Tumor Immunity of GC

The Cancer Genome Atlas (TCGA) project for GC revealed
four molecular subtypes [72]; among them, Epstein–Barr
virus- (EBV-) positive and microsatellite instability subtype
was associated with high-density tumor-infiltrating lym-
phocytes and showed a better prognosis compared with
other subtypes [99]. Some previous studies have reported
that infiltrating immune cells had an effective host immune
response against GC cells [100, 101]. Taken together, the
tumor escape from immune response could deteriorate the
outcome of GC patients; therefore, this mechanism could be

a good target to improve the patients’ prognosis. However, the
exact mechanisms involved remain unknown.

CAFs produce a plethora of cytokines and chemokines
potentially contributing to tumor immunity at various stages
of cancer progression. The direct or indirect effects of IL-6,
IL-8, IL-10, TGF-𝛽, C-C motif chemokine ligand 2 (CCL2),
C-X-Cmotif chemokine ligand 9 (CXCL9), and CXCL10, but
not limited to those, on tumor immunity in patients with oral,
breast, and pancreatic cancer have been investigated [102–
104]. The role of CAFs in the regulation of tumor immunity
is seldom reported in GC. However, recent studies show that
CAFswere deeply involved inM2polarization ofmacrophage
suppressing immune clearance [105, 106]. CAFs could induce
M2 polarization in tumor-associated macrophage (TAM);
it has been well reported that the accumulation of M2
macrophage was significantly related to the poor survival
of GC patients [107] and M2 macrophages directly induced
invasion and metastasis of GC cells or indirectly reduced
immune response within GC tumors. The proportion of
CAF in the deep portion of the primary GC is higher
than that in the superficial layer, which positively correlates
with the increased number of M2 macrophages [105]. Other
studies reported that neurooncological ventral antigen 1
(NOVA1), a marker of activated CAFs, was suppressed in GC
microenvironment including CAFs, and NOVA1 suppression
was significantly correlatedwith immune dysfunction such as
an accumulation of M2 macrophage [106]. Although several
secretory proteins such as macrophage colony-stimulating
factor (M-CSF) [108], interleukin 33 (IL-33) [109], CCL2, and
interleukin 6 (IL-6) [110] have been suggested as stimulators
derived from CAFs for M2 macrophage in esophageal and
pancreatic cancers, it has never been reported in GC and
should be discovered to be applied for clinical setting in the
future.

8. CAF-Targeting Agents

As the role of CAFs in the progression of solid tumors
becomes clearer, several therapeutic approaches to inhibit
the function of CAFs have been suggested as novel
agents.

Some of those CAF-targeting agents have been already
applied in clinical settings in patients with various malignant
or nonmalignant diseases, but they were not used as CAF
inhibitors. Nilotinib is an inhibitor of the c-KIT receptor and
is effective in the treatment of chronic myeloid leukemia,
melanoma, and gastrointestinal stromal tumors [111–113].
Aside from c-KIT receptors, nilotinib also inhibits other
receptor tyrosine kinases such as platelet-derived growth
factor receptors (PDGF-R𝛼 and PDGF-R𝛽) or discoidin
domain receptors (DDR1 or DDR2) [52, 114]. A previous
study reported that PDGF-R was expressed in CAFs, not in
cancer cells [60]. As activated PDGF-R signaling pathway
in tumor stroma can increase the proliferation of cancer
cells [57] and stimulate GC angiogenesis [61], nilotinib could
be used as a potential inhibitor for GCs with a profuse
fibrotic stroma [51]. Tocilizumab has been clinically used
in several patients with rheumatic disease as an inhibitor
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Figure 1: Schematic image for role of cancer-associated fibroblasts in tumor microenvironment of gastric cancer.

of a pleiotropic cytokine such as IL-6. This drug has been
proposed as a potential inhibitor of GC cells and CAFs. The
in silico analysis using TCGA database of GCs revealed that
low expression of both IL-6 and IL-6R genes was significantly
related to improved survival of GC patients and the in
vivo experiments described that tocilizumab could efficiently
reduce tumor growth in xenograft models of GC cells mixed
with CAFs [53].

Several natural products have been proposed as suppres-
sors of CAF activity. Astragaloside IV, the main component
of nontoxic Chinese herb, inhibited cellular migration by
reducing the ability of CAFs to promote GC cell migration
and invasion through regulation of microRNA such as miR-
214 in the nontoxic low dose [54]. Paeoniflorin, the principal
bioactive component of Radix Paeoniae Rubra, inhibited the
secretion of IL-6 from CAFs and consequently inhibited the
migration- and invasion-promoting capacities of GC CAFs
[55].

Other agents have been evaluated to determine their
efficacy in suppressing the migration- and invasion-
promoting capacities of GC CAFs through various
preclinical models [46, 56, 59, 62, 115–118]; these agents
are listed in Table 2. However, future studies are required
to determine the toxic effects and indications of those
agents.

9. Conclusion and Future Perspectives

Studies have shown that the CAFs are an important compo-
nent in the TME of GC, and previous studies revealed the

potential effects of CAFs including carcinogenesis, metasta-
sis, invasion, angiogenesis, resistance to therapy, and tumor
immunity in various GC models (Figure 1). However, the
inhibitory mechanism of CAFs on GC cells as well as
TME has not been applied in GC treatment. Moreover, the
specific markers and origin of CAFs remain controversial.
Recent advanced technologies for single-cell transcriptome
profiling have uncovered spatial, functional, and genomic
heterogeneity of cancer cells and associated host cells in
TME [119]. The single-cell RNA-sequencing for lung [120],
pancreas [121], and colorectal cancer [122] revealed that CAFs
in solid tumors have molecular and functional intra- and
interheterogeneity and suggested specific CAF subpopula-
tions as targets for cancer treatment. However, to the best of
our knowledge, there has been no report that studies CAFs
heterogeneity through the single-cell molecular profiling
in GCs. Considering the functional role of CAFs in GCs,
further studies evaluating CAF heterogeneity are warranted
to determine the critical CAF subtype that expresses specific
targets for GC treatment.
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