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DeepBTS: Prediction of Recurrence-
free Survival of Non-small Cell Lung 
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Accurate prediction of non-small cell lung cancer (NSCLC) prognosis after surgery remains challenging. 
The Cox proportional hazard (PH) model is widely used, however, there are some limitations associated 
with it. In this study, we developed novel neural network models called binned time survival analysis 
(DeepBTS) models using 30 clinico-pathological features of surgically resected NSCLC patients (training 
cohort, n = 1,022; external validation cohort, n = 298). We employed the root-mean-square error (in the 
supervised learning model, s- DeepBTS) or negative log-likelihood (in the semi-unsupervised learning 
model, su-DeepBTS) as the loss function. The su-DeepBTS algorithm achieved better performance 
(C-index = 0.7306; AUC = 0.7677) than the other models (Cox PH: C-index = 0.7048 and AUC = 0.7390; 
s-DeepBTS: C-index = 0.7126 and AUC = 0.7420). The top 14 features were selected using su-DeepBTS 
model as a selector and could distinguish the low- and high-risk groups in the training cohort 
(p = 1.86 × 10−11) and validation cohort (p = 1.04 × 10−10). When trained with the optimal feature set for 
each model, the su-DeepBTS model could predict the prognoses of NSCLC better than the traditional 
model, especially in stage I patients. Follow-up studies using combined radiological, pathological 
imaging, and genomic data to enhance the performance of our model are ongoing.

Lung cancer is the fourth most commonly diagnosed cancer and the second most common cause of cancer-related 
death worldwide. Despite advances in cancer treatment over the last decade, the 5-year survival rate is still around 
50% for surgically resected non-small cell lung cancer (NSCLC). Even for stage I patients, 20% showed recurrence 
within 5 years. Thus, the identification of patients with poor prognoses after surgery is of considerable clinical 
relevance.

The Cox proportional hazards (PH) model is traditionally used to predict the clinical outcomes or hazard 
functions corresponding to specific time units. However, this model has the following major drawbacks:

(1) The proportional hazard assumption and linearity of each variable must be satisfied. These assumptions 
are difficult to be satisfied using real-world data, and their violation may lead to the creation of a false model1, (2) 
the exact model formula for tied samples is not computationally efficient; therefore, Efron’s or Breslow’s approxi-
mations are employed to fit the model in a reasonable time. These approximations are incapable of handling ties 
correctly and produce significantly different results depending on the frequency of ties2.

To solve these problems in classical survival analysis, several neural network-based hazard functions and 
overall survival time prediction models have been developed3. Numerous authors have proposed discrete-time 
deep learning models to predict the risk probability in each time interval4–7. These models are efficient, however, 
the output that represents the risk probability of each time interval must be clearly pre-defined before training. 
In addition, as the deep-learning models are considered to be ‘black-boxes,’ they provide little insight on which 
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variables have the highest influence on the model8. Thus, in this paper, we present a novel neural network model 
using clinico-pathological variables for predicting the recurrence probabilities of NSCLC patients in time-series 
intervals after surgical resection. Because few assumptions are needed in the proposed model, it can effectively 
address the main disadvantages of the Cox PH model and also minimize the effort of producing output data in 
current neural network model. A novel feature selection method using the neural network model is also pro-
posed, which can be used to measure the effect of each variable on the model.

Results
Patient characteristics.  The clinico-pathological characteristics for the training and external validation 
cohorts are summarized in Table 1. In the training cohort, the median age was 65 (33–86) years, 65.2% were male, 
and 54.3% were former or current smokers. Two-thirds of the patients (63.7%) exhibited adenocarcinoma histol-
ogy, and 65.7% were classified into stage I. More than half of the tumors (60.4%) were moderately differentiated, 
with a median tumor size of 2.5 cm. The baseline characteristics in the external validation cohort were not sig-
nificantly different from those in the training cohort. The median follow-up periods for the training and external 
validation cohorts were 40.4 and 39.8 months, respectively.

Model performance.  In this study, two discrete-time deep learning models (supervised binned-time sur-
vival analysis [s- DeepBTS] and semi-unsupervised binned-time survival analysis [su-DeepBTS]) were compared 
with the Cox PH model. The performance scores of the models are shown in Table 2. In the training cohort, the 
proposed su-DeepBTS algorithm performed the best among the three models: a concordance index (C-index) of 
0.7306 and an area under the curve (AUC) of 0.7677 were observed for the su-DeepBTS algorithm, while C-index 
of 0.7048 and 0.7126 and AUCs of 0.7390 and 0.7420 were observed for the Cox PH model and s-DeepBTS algo-
rithm, respectively. The result of one-way ANOVA with post hoc test (pairwise t test with Holm-Sidak correction) 
showed the significant difference of C-index between Cox PH model and su-DeepBTS model (p-value = 5.45 
×10-6). The detailed scores for all of the iterations are provided in Supplementary Table S1.

In the external validation cohort, the performance of the su-DeepBTS algorithm was also the highest 
(C-index = 0.7077; AUC = 0.7224). When the model was trained using only 14 features selected as the optimal 
set for su-DeepBTS described in the feature selection part (next paragraph) and tested in the external validation 
cohort, it showed similar performance when all the features were used (C-index = 0.7013; AUC = 0.7123).

Feature selection and performances of model-feature selector pairs.  Since three different mod-
els (Cox PH, s-DeepBTS, and su-DeepBTS) and four different selectors were employed, 12 pairs of models and 
feature selectors could be built in total (Table 3). The standard deviations of the ‘peak C-index’ and ‘Area under 
the graph’ were 0.008 and 0.591, respectively; therefore, the area under the graph was selected as a factor to deter-
mine the performances of the pairs. Interestingly, all four selectors with su-DeepBTS model showed good per-
formances. The su-DeepBTS model using feature set ranked by su-DeepBTS selector exhibits best performance 
with the largest area under the graph and highest peak C-index score, as shown in Fig. 1. Therefore, the optimal 
model was defined as the su-DeepBTS model trained with top 14 feature sets selected by the su-DeepBTS selector.

Table 4 lists the top 15 important features selected by the four different feature selectors. In the case of 
su-DeepBTS erasing feature selector, gender; ECOG performance status; baseline lung diffusion capacity (DLCO, 
diffusion capacity of carbon monoxide); laboratory findings including white blood cell (WBC) count, lymphocyte 
fraction, albumin; the pathological findings including the number of lymph node (LN) metastasis, T stage, tumor 
histology, vascular invasion, and lymphatic invasion; achievement of complete resection (R0 resection); neoadju-
vant treatment and adjuvant treatment were identified as the optimal 14 feature set for su-DeepBTS.

External validation.  To confirm that the proposed model would be effective when applied to a completely 
different dataset, the trained model was tested using an external validation cohort. Since the optimal feature set 
for each model had been determined, the test scores of the external validation cohort for the whole feature set and 
the set of the optimal features for each model were obtained. As summarized in Table 2, the su-DeepBTS model 
also outperformed the other models when applied to the external validation dataset in the entire as well as opti-
mal feature set case. All of the test scores obtained using the external validation set are shown in Supplementary 
Table S2 (all features) and Supplementary Table S3 (optimal features for each model).

Additional experiments were also conducted with the public dataset (Supplementary Tables S4 and S5). In the 
common set, su-DeepBTS outperformed the Cox PH model, which suggested that the former could be scalable 
to predict the survival of different cancer types.

Prediction of 3-year recurrence risk.  To evaluate the efficacy of the su-DeepBTS model trained using the 
top 14 features selected by the su-DeepBTS selector, the confusion matrix was obtained by comparing the pre-
dicted high- and low-risk groups for the 3-year recurrence. To divide the predicted high- and low-risk groups, the 
threshold value was defined as the value at the point farthest from the =y x line in the receiver operating char-
acteristic (ROC) curve obtained after calculating the AUC. The sensitivity, specificity, and accuracy were calcu-
lated based on the true label for the 3-year recurrence (Table 5). Because there were two different cohorts (the 
training and external validation cohorts) and two different feature sets (the whole feature set and optimal feature 
set), four different cohort–feature set pairs could be used to evaluate the su-DeepBTS model. The Kaplan–Meier 
curves of the external validation cohort show similar performances to those of the training cohort, demonstrating 
the significant difference in survival prognoses between the predicted high- and low-risk groups (Fig. 2). Notably, 
in both the cohorts, the p-value of the results obtained using only 14 features are almost the same as those 
obtained using all of the features.
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In addition, the analysis was performed for stage I patients only, which is of special interest owing to the 
controversies among clinicians regarding whether postoperative treatment should be performed for such 
patients. The recurrence-free survival (RFS) durations of patients with high and low risk scores were signifi-
cantly different (lowest p-value = 3.99 × 10−7, average p-value = 5.17 × 10−4, Fig. 2c < Stage I>), even in stage 
IA (lowest p-value = 5.62 × 10−7, average p-value = 1.85 × 10−1, Fig. 2c < Stage IA>) and stage IB (lowest 
p-value = 8.05 × 10−2, average p-value = 1.69 × 10−1, Fig. 2c < Stage IB>).

Characteristic

Training cohort
External 
validation cohort

p-valuen = 1,022 (%) n = 298 (%)

Age (years) Median (range) 66 (33–86) 66 (25–85) 0.387

Gender
Male 666 (65.2) 195 (65.4) 0.931

Female 356 (34.8) 103 (34.6)

Smoking history
Never 461 (45.7) 132 (45.2) 0.884

Former/current 548 (54.3) 160 (54.8)

ECOG 0 503 (49.2) 157 (52.7) 0.292

performance status 1 519 (50.8) 141 (47.3)

CEA ng/mL 2.1 (1.0–230.1) 1.9 (1.0–1070.9) 0.428

WBC 106/L 7,399 ± 3.8 7,611 ± 3.3 0.381

Neutrophil % 59.7 ± 31.1 60.0 ± 12.4 0.722

lymphocyte % 29.9 ± 18.7 28.5 ± 10.9 0.227

Haemoglobin g/dL 13.2 ± 3.8 13.0 ± 1.7 0.518

Platelet 109/L 237 ± 79 239 ± 83 0.610

C-reactive protein mg/dL 0.14 (0.0–34.1) 0.12 (0.02–23.6) 0.450

Pulmonary function
FEV1 (L) 2.4 (0.08–352.0) 2.37 (0.96–139.0) 0.915

DLCo (%) 85 (8–173) 83 (9–159) 0.327

Histology

Adenocarcinoma 651 (63.7) 2003 (67.1) 0.442

Squamous 303 (29.6) 77 (25.8)

others 68 (6.7) 21 (7.0)

Tumour size cm 2.5 (0.4–13.0) 2.5 (0.3–13.0) 0.226

No. of LN positivity 0 (0–23) 0 (0-31) 0.847

T stage

T1 474 (46.5) 160 (53.7) 0.064

T2 433 (42.5) 114 (38.3)

T3/4 113 (11.1) 24 (8.1)

N stage

N0 757 (74.9) 239 (80.5) 0.136

N1 135 (13.4) 30 (10.1)

N2 119 (11.8) 28 (9.4)

TNM stage

I 669 (65.7) 211 (71.0) 0.218

II 200 (19.6) 50 (16.8)

III 150 (14.7) 36 (12.1)

Tumor differentiation

Well 197 (19.7) 75 (25.6) 0.054

Moderately 603 (60.4) 156 (53.2)

Poorly 199 (19.9) 62 (21.1)

Vascular invasion Yes 143 (14.0) 35 (11.9) 0.489

Lymphatic invasion Yes 353 (34.6) 95 (32.0) 0.560

Perineural invasion Yes 59 (5.8) 13 (4.4) 0.642

Resection status*

R0 980 (97.5) 289 (98.0) 0.849

R1 19 (1.9) 5 (1.7)

R2 6 (0.6) 1 (0.3)

Neoadjuvant treatment Yes 50 (4.9) 14 (4.7) 0.888

Adjuvant treatment Yes 333 (33.1) 86 (29.3) 0.214

Recurrence Yes 272 (26.6) 76 (25.2) 0.618

Table 1.  Baseline characteristics of the training and validation cohorts. ECOG, Eastern Cooperative Oncology 
Group; CEA, carcinoembryonic antigen; WBC, white blood cell; FEV1, forced expiratory volume in the first 
second; DLCo, diffusing capacity of the lung for carbon monoxide; LN, lymph node. *R0, number of cancer 
cells seen microscopically at the resection margin; R1, microscopic positive margin; R2, macroscopic positive 
margin.
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Discussion
In the clinical Big Data era, an approach using neural network can serve as alternatives to the Cox PH model 
that overcome the disadvantages of the latter. In this study, we developed a deep learning algorithm using a neg-
ative log likelihood (NLLH) cost function to predict the clinical outcomes in particular time intervals of NSCLC 
patients who received surgical resection by using clinico- pathological data, which is easily achievable in actual 
clinical practice. The su-DeepBTS model yielded the best performance among the three models employed to 
predict cancer recurrence and also performed well as a feature selector. Since prognostic analysis and feature 
selection can be conducted simultaneously using the su-DeepBTS model, it could serve as an important means 
of applying deep learning to predict recurrence and extract major features from electronic hospital record data.

Our proposed deep learning model is more useful for survival analysis than the traditional statistical method, 
the Cox PH method. First, the assumption of proportional hazards is not needed. Second, the neural network 
training models can handle all of the samples, including censored samples and tied samples, without any addi-
tional approximations for survival analysis. Third, the su-DeepBTS model can capture the non-linearity of the fea-
tures because it is a multi-layer perceptron (MLP) model. Moreover, in comparison with the current discrete-time 
survival analysis based on neural network, the bias caused by manual generation of output vector can be reduced 
because su-DeepBTS is an unsupervised model and therefore does not need specific outputs.

Previous survival analysis studies using machine learning involved the use of support vector machine-based 
prediction models (sensitivity = 0.89; specificity = 0.73) or decision support systems (C-index = 0.84 with an 
accuracy of 86%) to predict breast cancer recurrence9,10, and probabilistic neural networks to predict cervical 
cancer recurrence (sensitivity = 0.975; accuracy = 0.892)11. In their research on lung cancer, Lynch et al. com-
pared various supervised machine learning classification techniques using the Surveillance, Epidemiology, and 
End Results (SEER) database and showed that the models in which the gradient boosting machine was utilized 
with the root-mean-squared error (RMSE) were the most accurate12. However, these models are not suitable for 
identifying patients with high and low risks of recurrence at particular time point. The su-DeepBTS can overcome 

Number of features

Training cohort External validation cohort

28
Optimal feature 
set 28

Optimal 
feature set

Cox PH
C-index 0.7048 ± 0.0067 0.7248 ± 0.0030 0.6939 ± 0.0017 0.6924 ± 0.0009

AUC 0.7390 ± 0.0071 0.7622 ± 0.0041 0.7064 ± 0.0016 0.7112 ± 0.0010

s-DeepBTS
C-index 0.7126 ± 0.0089 0.7338 ± 0.0022 0.6879 ± 0.0048 0.6944 ± 0.0008

AUC 0.7420 ± 0.0183 0.7727 ± 0.0024 0.7020 ± 0.0054 0.7083 ± 0.0012

su-DeepBTS
C-index 0.7306 ± 0.0042 0.7419 ± 0.0044 0.7077 ± 0.0019 0.7013 ± 0.0018

AUC 0.7677 ± 0.0049 0.7780 ± 0.0054 0.7224 ± 0.0021 0.7123 ± 0.0021

Table 2.  Performance scores of three different models. Cox PH, Cox proportional-hazards; AUC, area under 
the curve; s-DeepBTS, supervised deep neural network for binned time survival analysis; su-DeepBTS, semi-
unsupervised deep neural network for binned time survival analysis.

Pairs (model - feature selector)
Area under 
the graph Peak score

Peak 
feature 
number

su-DeepBTS–su-DeepBTS erase 19.896134 0.742358 14

su-DeepBTS–s-DeepBTS erase 19.782187 0.739613 12

s-DeepBTS–s-DeepBTS erase 19.437697 0.726892 17

su-DeepBTS–Cox PH erase 18.982598 0.736879 14

su-DeepBTS–Cox PH log(p) value 18.912272 0.735058 4

s-DeepBTS–su-DeepBTS erase 18.835688 0.73088 3

Cox PH–su-DeepBTS erase 18.683417 0.723161 5

Cox PH–Cox PH erase 18.587178 0.72231 7

Cox PH–s-DeepBTS erase 18.41109 0.717018 5

s-DeepBTS–Cox PH log(p) value 18.375609 0.734164 4

Cox PH–Cox PH log(p) value 18.358491 0.72157 5

s-DeepBTS–Cox PH erase 17.984331 0.719938 2

Standard Deviation 0.591 0.008 —

Table 3.  Performance comparison of model–feature selector pairs. Each row presents area under the graph 
drawn in Fig. 1. with the number of features used as the x-value and C-index as the y-value (“Area under the 
graph” column), peak C-index score in each graph (“Peak score” column), and the number of features used 
when the C-index score is maximum (“Peak feature number” column). Cox PH, Cox proportional-hazards; 
s-DeepBTS, supervised deep neural network for binned time survival analysis; su-DeepBTS, semi-unsupervised 
deep neural network for binned time survival analysis.
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this problem because it is a multi-task learning model that can calculate the survival probability of each time-bin, 
incorporating prediction tasks in multiple time intervals into a single learning process13.

Interestingly, in terms of feature selection, the su-DeepBTS model was also the most effective. The su-DeepBTS 
model achieved the highest performance with the optimal feature set selected by the su-DeepBTS selector, and 

Figure 1.  Comparison of model–feature selector pairs. The curves for all combinations of model–feature 
selector pairs are presented, with the x-axis representing the number of features used and the y-axis indicating 
the C-index.

Cox PH log(p) value 
(ascending order)

Cox PH erasing 
feature selection

s-DeepBTS erasing 
feature selection

su-DeepBTS erasing 
feature selection

1 No. of LN positivity No. of LN positivity No. of LN positivity No. of LN positivity

2 T stage T stage T stage T stage

3 ECOG WBC Age R0 resection

4 Vascular invasion Sex R0 resection Sex

5 WBC Lymphocyte fraction Vascular invasion Vascular invasion

6 Adjuvant treatment DLCO WBC DLCO

7 Age CEA Tumour differentiation Lymphocyte fraction

8 CEA Vascular invasion Lymphatic invasion WBC

9 CRP Haemoglobin Perineural invasion ECOG

10 Tumour size Tumour differentiation DLCO Lymphatic invasion

11 Lymphocyte fraction Albumin Tumour size Histology

12 Tumour differentiation ECOG ECOG Neoadjuvant treatment

13 DLCO Smoking LDH Adjuvant treatment

14 Histology Adjuvant treatment Albumin Albumin

15 Perineural invasion Tumour size Haemoglobin Tumour differentiation

Table 4.  Top 15 important features selected by four different feature selectors. Cox PH, Cox proportional-
hazards; s-DeepBTS, supervised deep neural network for binned time survival analysis; su-DeepBTS, semi-
unsupervised deep neural network for binned time survival analysis; LN, lymph node; ECOG, Eastern 
Cooperative Oncology Group; WBC, white blood cell; DLCO, diffusion capacity of carbon monoxide; CEA, 
carcinoembryonic antigen; LDH, lactic acid dehdrogenase

Training cohort Sensitivity Specificity Accuracy

number of 
features = 14 0.72047143 0.73982096 0.73432601

number of 
features = 28 0.68479412 0.76053801 0.73782872

Validation cohort Sensitivity Specificity Accuracy

number of 
features = 14 0.621875 0.74204545 0.7100

number of 
features = 28 0.634375 0.73522727 0.7083333

Table 5.  Sensitivity, specificity, and accuracy for 3-year recurrence prediction using su-DeepBTS model.
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the same was also observed with the external validation cohort. Because adding other features to the optimal 
feature set degrades model performance, creating a relevant feature set is crucial for survival analysis, and the set 
can be optimized by the su-DeepBTS selector. Thus, the su-DeepBTS model is better suited for handling a huge 
amount of clinical data, not only as a recurrence predictor, but also as a feature selector.

The top 14 features selected from the su-DeepBTS included well-known prognostic parameters that are clini-
cally relevant. Notably, the number of metastatic LNs was selected as a common top feature by four feature selec-
tors and this number is associated with prognosis in various malignancies, including colorectal, gastric, breast, 
and bladder cancer14. On the other hand, in lung cancer, the N stage is determined by the locations of metastatic 
LNs other than the number. However, in our study, the number of metastatic LNs outweighed the significance 
of the N stage as the prognostic feature. Thus, the prognostic significance of this parameter could be validated in 
future studies.

Stage I patients are of special interest within this population as substantial intervention is a matter of debate. 
To determine whether the su-DeepBTS model could differentiate among the prognoses of early-stage NSCLC 
patients, the survival probability according to the risk identified by the su- DeepBTS model was calculated for the 
stage I patients. The RFS durations of patients with high and low risk scores were significantly different from one 
another, even when the analysis was performed separately for stages IA and IB. These results imply that the model 
can further sub-categorize stage I patients who are at risk of recurrence and might need substantial treatment. 
Thus, using the su-DeepBTS model trained with the selected optimal features could be an effective method of 
survival analysis.

Figure 2.  Kaplan–Meier curves according to the predicted risk of recurrence for all patients which obtained 
using su-DeepBTS model trained with (a) optimal 14 features and (b) all 28 features (left side is for the training 
cohort and right side is for the external validation cohort). (c) Kaplan–Meier curves according to predicted risk 
of recurrence in stage I/IA/IB patients of external validation cohort which obtained using su-DeepBTS model 
trained with optimal 14 features.
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Our study has several limitations. First, about 70% of the samples were censored in the training and external 
validation cohorts, which could have negatively impacted the model performance. Nevertheless, we were able to 
create a deep learning-based survival analysis model with better performance than the Cox PH model by using an 
NLLH loss function. As a future step, we will increase the number of samples, especially the number of relapsed 
patients, to obtain a comparable ratio between relapsed and censored patients. In addition, some data used for 
model training and validation were missing or inaccurate due to the retrospective nature of the study. As compu-
tational prognostic prediction is highly dependent on the data quality, the clinical utility of our proposed model 
remains to be established prospectively.

In conclusion, we developed a novel semi-unsupervised binned-time survival analysis algorithm using 
clinico-pathological parameters. The su-DeepBTS model using 14 features selected by the su- DeepBTS selector 
could predict the prognoses of resected NSCLC patients better than the Cox PH model. Since prognostic analysis 
and feature selection can be performed simultaneously with this algorithm, it provides a useful means of applying 
deep learning to extract major features from electronic hospital record data and performing analysis for clinical 
informatics. In addition, as multi-modal data integration is important for accurate prognosis prediction, we plan 
to merge various features in radiological and pathological imaging, and genomic data into input features of this 
model for performance enhancement.

Methods
Study population.  Two cohorts of NSCLC patients who received surgical resection were enrolled in this 
study. The inclusion criteria were patients with NSCLC histology and having received surgical resection with 
a curative aim. Patients with minimally invasive adenocarcinoma, adenocarcinoma in situ, or bronchoalveolar 
carcinoma, were excluded. The training cohort consisted of 1,022 patients who were treated between January 2010 
and March 2015. The external validation cohort of 298 patients was obtained between April 2015 and December 
2016. Clinical and pathological data with 30 variables were retrospectively collected by eight independent review-
ers. The age, gender, smoking history, ECOG performance status, laboratory findings, and pulmonary function 
of each patient were obtained within 2 weeks before the date of surgery. The tumor size was defined as the longest 
sample diameter. The TNM stage was pathologically classified according to the 7th edition of the American Joint 
Committee on Cancer15. Neoadjuvant or adjuvant chemotherapy consisted of platinum-based doublet agents. 
Follow-up computed tomography of the chest was performed for each patient in 3–4 month intervals for the first 
2 years after surgical resection, and every 6 months thereafter. This study was approved by the institutional review 
board of Catholic Medical Center (No.UC17SESI0073) and was performed in accordance with the guidelines 
of human research. The requirement for written informed consent was waived by the institutional review board 
(Catholic Medical Center) because of the study analysis being retrospective in nature.

Data preparation and processing.  Before building the models, missing values of the categorical features 
were filled with 10,000 and those of the continuous features were filled with the averages of the existing values. 
The Cox PH model was used as the baseline model, and therefore, it was necessary to exclude the variables that 
violated the PH assumption to avoid building an ill-fitted Cox PH model. Among the five variables that violated 
the assumption, ‘creatinine’ and ‘smoking amount’ features were excluded from the input features owing to their 
low importance in the fitting of the Cox PH model. In addition, the ‘R0_resection’ feature was used as stratifying 
factors because it is important for Cox PH fitting16. A detailed explanation of dataset processing is presented in 
the Supplementary methods. Consequently, 28 out of 30 features were used to train the models.

To test all of the samples in the processed training cohort, five-fold cross-validation was performed, which 
means that the whole dataset was divided into five sets, among which one was employed as a test set and the other 
four were used to learn the model, and the test score was obtained from the test set. When dividing the dataset, 
the percentage of censored patients in the entire sample was set to be the same in the training and test sets. The 
final test score was defined as the test score averaged over 10 iterations of five-fold cross-validation to consider the 
change of the score depending on which sample was included in each training and test set. This scoring method 
was equivalently applied to the external validation cohort, except that external validation cohort was used to 
obtain the test score of the trained model in each fold.

Binned-time survival analysis models.  Supervised binned-time survival analysis (s-DeepBTS).  The 
s-DeepBTS model is a supervised single-layer perceptron model using the RMSE as the loss function. To train the 
model, the proper output, i.e., the survival probability in each time interval, must be pre-defined. For relapsed 
patients, yj, the output value of the jth time interval Ij, is 1 when the patient is alive without recurrence, and 0 after 
the patient shows recurrence. For censored patients, yj is 1 until the follow-up is lost, and ( )i t I

d
n

1
i j

i

i
∏ = ≤

−  after 

censoring occurs, where ni is the total number of samples without recurrence at the beginning of Ij and diis the 
number of event-occurred samples in the specific Ij. The total number of time intervals J is defined as

)j J I t t t t int RFS[[1, ]], , , with 0 and (max( )) 1 (1)j j j J1 0∀ ∈ = 
 = = + .−

Semi-unsupervised binned-time survival analysis (su-DeepBTS).  The su-DeepBTS model is a semi-unsupervised 
MLP model that can capture the non-linearity of the input features. To predict the hazard probability in each 
time interval in an unsupervised mode, the custom loss was constructed to calculate the NLLH functions of the 
patients in each time interval and add them up, and the result was used as the final loss value of model. The model 
was trained to minimize loss. The loss function is
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.
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β
∈

NLLH log e
e

( )
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X

I R
X

j

j
j

In Eq. (2), β is the regression coefficient, Rj is an at-risk sample for which an event may occur at time j, Xj is the 
value of the explanatory variable for the individual for which the event occurred at time j, and ∑ β

∈ eI R
X

j
j is the 

sum of the risks for members of the at-risk set R at time j.
The main concept of both models is multi-task learning, as in the existing models7, but the means of obtaining 

the output is simplified in the s-DeepBTS model and no pre-defined output is required to train the su-DeepBTS 
model. Overviews of the complete processes of these models are provided in Fig. 3. As the baseline of the two 
proposed models, the traditional statistical survival analysis model, the Cox PH model, was used. Each model is 
described in detail in the Supplementary Methods.

Feature selection.  Determining how each feature affects the model performance is an important step for 
further application. Deep-learning models do not generate specific feature importance indicators, so a novel 
feature selection method had to be created to extract the importance of each feature from the proposed models. 
The newly created feature selection method called “erasing feature selection” is a means of evaluating the model 
performance by excluding one feature at a time. A simple example is provided in Supplementary Fig. S1.

As the method of erasing feature selection can be applied to any model, all the three models proposed in this 
study can be used as feature selectors. Therefore, three selectors based on the erasing selection method (Cox 
PH/s-DeepBTS/su-DeepBTS erasing feature selection) and an additional selector based on log(p)-value extracted 
from Cox PH model (Cox PH log(p) value) were employed for feature selection.

Statistical analysis.  The RFS duration was defined as the time from the date of surgery until the first recur-
rence or death due to any cause, whichever was observed first, and the survival curves were estimated by utilizing 
the Kaplan–Meier method and compared using the log-rank test.

The performances of our models were measured and compared by employing two statistics, the C-index and 
AUC score. The weighted average was calculated using the estimated hazard probability in each time interval as a 
weight, and this calculated weighted average was set as the RFS duration, which was used as the input of the 

Figure 3.  Overview of the proposed binned-time survival analysis models. (a) Simple example to explain the 
method of calculating survival probabilities for building output values. The total time-bin count of the output is 
based on the maximum RFS duration among all of the samples. Since 36 months is the longest duration defined, 
the total number of bins is 37. Each bin was filled with a survival probability value according to the recurrence 
statuses of the samples. For all of the samples, each time bin was filled with 1 until recurrence or follow-up loss. 
After relapse or follow-up loss, the time bin was filled with 0 for recurrence patients and with the calculated 
Kaplan–Meier survival probability for censored patients. Schema of of (b) s-DeepBTS and (c) su-DeepBTS 
models. RFS, recurrence-free survival; s-DeepBTS, supervised deep neural network for binned time survival 
analysis; su-DeepBTS, semi-unsupervised deep neural network for binned time survival analysis.
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C-index. To determine the AUC of the classification for 3-year recurrence, patients censored before 3 years were 
excluded from the test set, because the recurrence labelling for those samples was not clear. After refining the test 
samples, the sigmoid function 

+ −( )e
1

1 x  was applied to calculate the probability of 3-year recurrence. The value 
obtained by subtracting the predicted duration from the reference number of months (36 months) was used as the 
input of the sigmoid function, and the final result of the sigmoid function was used to calculate the AUC. These 
scoring methods were applied equivalently to the proposed models. In the Cox PH case, the RFS duration was 
predicted directly as an outcome of the model, so post-processing was not needed. The statistical analysis was 
performed using the ROC function in the sklearn package for the AUC and a custom function for C-index scor-
ing. We applied the same analysis method for stage I subpopulation. A p-value less than 0.05 was considered sta-
tistically significant.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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