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Abstract: Umami ingredients have been identified as important factors in food seasoning and
production. Traditional experimental methods for characterizing peptides exhibiting umami sensory
properties (umami peptides) are time-consuming, laborious, and costly. As a result, it is preferable
to develop computational tools for the large-scale identification of available sequences in order to
identify novel peptides with umami sensory properties. Although a computational tool has been
developed for this purpose, its predictive performance is still insufficient. In this study, we use a
feature representation learning approach to create a novel machine-learning meta-predictor called
UMPred-FRL for improved umami peptide identification. We combined six well-known machine
learning algorithms (extremely randomized trees, k-nearest neighbor, logistic regression, partial least
squares, random forest, and support vector machine) with seven different feature encodings (amino
acid composition, amphiphilic pseudo-amino acid composition, dipeptide composition, composition-
transition-distribution, and pseudo-amino acid composition) to develop the final meta-predictor.
Extensive experimental results demonstrated that UMPred-FRL was effective and achieved more
accurate performance on the benchmark dataset compared to its baseline models, and consistently
outperformed the existing method on the independent test dataset. Finally, to aid in the high-
throughput identification of umami peptides, the UMPred-FRL web server was established and made
freely available online. It is expected that UMPred-FRL will be a powerful tool for the cost-effective
large-scale screening of candidate peptides with potential umami sensory properties.

Keywords: umami peptide; sequence analysis; bioinformatics; machine learning; feature representa-
tion learning

1. Introduction

In foods, sensory flavor is closely connected with food selection, consumption, ab-
sorption, and digestion [1]. Although the umami taste has long been perceived in many
traditional foods such as soy sauce, cheese, and fermented Asian foods, it was only recently
that this taste quality was officially recognized [2]. The term “umami” is derived from the
Japanese word (うま味), which means “pleasant savory taste”, feeling of “mouthfulness”,
or deliciousness. In 2002, umami was identified as the fifth basic taste (after salty, sweet,
sour, and bitter) to describe a pleasant savory or MSG-like flavor [3]. As a result, under-
standing the biophysical and biochemical properties of the umami taste is critical in both
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scientific research and the food industry. Because of the potential of umami peptides in
the food industry, identifying and characterizing peptide umami intensity could be highly
useful in both scientific and nonscientific research.

Several experimental methods, including reversed-phase high-performance liquid
chromatography (RP-HPLC) and MALDI-TOF-MS analysis, have been used to identify
and characterize peptides with umami sensory properties thus far [4,5]. To date, next-
generation sequencing has resulted in the discovery of a large number of novel proteins,
and it is possible that unknown candidate peptides from these proteins exhibit umami
sensory properties. The existing experimental methods, however, are time-consuming
and expensive. As a result, developing accurate and efficient computational methods for
identifying umami peptides is necessary and can be a good complement to experimental
methods. Several previous studies have concentrated on the identification and characteriza-
tion of umami peptides, using computer-assisted methods such as homology modeling and
molecular docking [6–9]. Meanwhile, the development of machine learning (ML)-based
predictors could be useful in identifying umami-sensing peptides from large-scale protein
sequences. Charoenkwan et al. recently developed iUmami-SCM [10], a novel sequence-
based predictor. To the best of the authors’ knowledge, the reported iUmami-SCM can
predict and analyze peptides with umami sensory properties based on sequence informa-
tion, without knowing the 3D structure of the protein. The iUmami-SCM tool, in particular,
was developed using a simple and interpretable scoring card method (SCM) in conjunction
with estimated propensity scores of 20 amino acids and 400 dipeptides. Although this
method has been used for the development of ML-based predictors of umami peptides
with good performance as deduced from balanced accuracy (BACC), sensitivity (Sn), and
Matthews coefficient correlation (MCC) of 0.824, 0.714, and 0.679, respectively, its overall
prediction performance is not yet satisfactory enough owing to the inclusion of insufficient
informative features and the use of only a single encoding and ML classifier.

Addressing the aforementioned issues, we present UMPred-FRL, a novel machine-
learning meta-predictor that uses a feature representation learning method to improve
the predictive performance of umami peptides. In the development of UMPred-FRL, we
explored comprehensive and efficient feature encodings with popular ML algorithms. As
we can see in Figure 1, we combined six different ML algorithms (extremely randomized
trees (ET), k-nearest neighbor (KNN), logistic regression (LR), partial least squares (PLS),
random forest (RF), and support vector machine (SVM)) with seven different feature en-
codings (amino acid composition (AAC), amphiphilic pseudo-amino acid composition
(APAAC), dipeptide composition (DPC), composition (CTDC), transition (CTDT), distri-
bution (CTDD), and pseudo-amino acid composition (PAAC)) for generating 42 baseline
models. The predicted probabilistic scores of umami peptides were then estimated using
these baseline models, and these new feature representations were considered. A final
SVM-based meta-predictor was then developed by combining and selecting these new
feature representations. On the basis of cross-validation and independent test datasets,
our comparative results showed that UMPred-FRL outperformed its constituent baseline
models. As for the independent test dataset, UMPred-FRL consistently outperformed the
existing method (iUmami-SCM) in terms of BACC (0.860 vs. 0.824), Sn (0.786 vs. 0.714),
and MCC (0.735 vs. 0.679). These findings demonstrated the proposed model’s efficacy
and generalizability. Furthermore, our feature analysis revealed that when compared to
seven well-known feature encodings, our proposed new feature representations had a
higher discriminative capability to capture the key information about umami peptides.
Finally, in order to maximize the utility of our proposed predictor, we created a publicly
accessible web server at http://pmlabstack.pythonanywhere.com/UMPred-FRL (accessed
on 1 December 2021). We believe that UMPred-FRL’s superior performance will allow for
the rapid screening of candidate peptides with potential umami sensory properties.

http://pmlabstack.pythonanywhere.com/UMPred-FRL
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Figure 1. The overall flowchart of the development of UMPred-FRL. It consists of dataset construction, feature extraction,
baseline model construction, new feature representation generation, and a final meta-predictor development.

2. Materials and Methods
2.1. Datasets

To ensure a fair comparison, the same benchmark datasets (UMP-TR and UMP-IND)
presented in previous work were used to train and evaluate our proposed predictor [10].
This dataset contains 140 umami peptides and 304 non-umami peptides, which are cate-
gorized as positive and negative samples, respectively. Specifically, the positive samples
were experimentally validated umami peptides identified in the literature [11–16] and the
BIOPEP-UWM databases [17], while the negative samples were bitter peptides derived
from our previous study [18]. All peptide sequences were unique in both positive and neg-
ative datasets. The UMP-TR dataset had 112 umami and 241 non-umami peptides, whereas
the UMP-IND dataset had 28 umami and 61 non-umami peptides. These two datasets are
available for free download at http://pmlabstack.pythonanywhere.com/UMPred-FRL
(accessed on 1 December 2021).

2.2. Overall Framework of UMPred-FRL

Figure 1 depicts the overall development framework of UMPred-FRL. In particular,
the illustration depicts the four main steps in the development of UMPred-FRL: feature
extraction, baseline model construction, new feature representation generation, and final
meta-predictor development. First, we used seven different feature descriptors from
various perspectives (AAC, APAAC, CTDC, CTDD, CTDT, DPC, and PAAC). Second,
using six well-known ML algorithms, these feature descriptors were used to create a pool of
baseline models. Afterwards, by using the feature representation learning method [19–21],
each baseline model was trained and used to generate new feature representations having
class and probabilistic information. Finally, a set of new feature representations was
combined to create a final meta-predictor.

http://pmlabstack.pythonanywhere.com/UMPred-FRL
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2.3. Feature Encoding

We investigated the informative patterns of umami peptides using seven different
encoding schemes, including AAC, APAAC, CTDC, CTDD, CTDT, DPC, and PAAC. These
seven encoding schemes take into account twenty different types of 20 amino acids (A, C, D,
E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y) in peptide sequences and represent them
in various N-dimensional (D) feature vectors. The seven encoding schemes are described
in the subsections that follow.

2.3.1. AAC and DPC

The frequency of 20 amino acids and 400 dipeptides is calculated using the AAC
and DPC encoding schemes. These two encoding schemes have been used successfully to
investigate a variety of protein and peptide functions. AAC and DPC provide 20D and
400D feature vectors for a given peptide sequence, respectively, and they are calculated as
follows:

f (i) =
N(i)

L
, r ∈ {A, C, D, E, F, G, H, . . . , Y} (1)

f (i, j) =
N(i, j)
L− 1

, r, s ∈ {A, C, D, E, F, G, H, . . . , Y} (2)

where N(i) is the frequency of amino acid represented by residue type © and L is the length
of the peptide. Furthermore, N(i,j) is the frequency of dipeptide represented by residue
types i and j.

2.3.2. CTDC, CTDD and CTDT

Dubchak et al. developed the composition, transition, and distribution (CTD) method
to predict protein folding class [22]. The three descriptors of composition (C), transition
(T), and distribution (D) can be calculated using two factors: (i) Amino acid sequences
which can be divided into specific structural sequences or by physicochemical properties
of residues; and (ii) Tomii and Kanehisa’s main amino acid index [23] that is based on
twenty amino acids, which have been divided into three groups on the basis of 13 different
physicochemical properties including hydrophobicity, normalized van der Waals volume,
polarity, polarization, charge, secondary structure, and solvent availability [24]. As a result,
the percentage composition of each group in the peptide sequence has been described
using these three descriptors. The work of Xiao et al. [19] provides more information
on the characteristics of CTDC, CTDD, and CTDT. The iFeature module in the Python
environment was used to construct three different types of sequence functions [20]. In
particular, CTDC and CTDD can be calculated as follows:

C(r) =
N(r)

L
, r ∈ {NE, PO, HY} (3)

T(r, s) =
N(r, s) + N(s, r)

L− 1
, r, s ∈ {(NE, HY), (PO, NE), ( HY, PO)} (4)

D(r) =
(

L(r, 1)
N

,
L(r, 2)

N
,

L(r, 4)
N

,
L(r, 4)

N
,

L(r, 5)
N

)
r ∈ {NE, PO, HY} (5)

where C(r) is the frequency of the r-type amino acids in the sequence, N(r) is the size
of the rth group in an amino acid, N is the length of the line, and N(r, s) is the frequency
of occurrence of dipeptides from group rs to group sr; L(r, 1), L(r, 2), L(r, 3), L(r, 4) and
L(r, 5) show information on the location of the rth group of amino acids in the first 25%, 50%,
75% and 100%. Three classes and seven properties yield 21D (3 × 7) function descriptors
in a CTDT or CTDC. The calculations do not account for any gaps.

2.3.3. PAAC and APAAC

The sequence information of AAC and DPC descriptors can be lost, as reported in
previous studies [24–26]. Chou [25] suggested PAAC and APAAC as solutions to this
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problem. PAAC takes into account not just the frequency of each amino acid, but also the
effect of sequence order on the amino acid sequence [25]. According to Chou, the PAAC is
formulated as: 

θi = ∑N−d
i=1

(Pi−Pi+d)
2

Np

Xc(i) =
Ni

1+ω×∑30
i=1 θi

Xclambdai
= ω×θi

1+ω×∑30
i=1 θi

(6)

where θi is the number of factors related to the order of the sequence. Pi is the value of the
properties of the i-th amino acid. NP is the number of properties. Ni is the appearance of
the ith amino acid and ω is the parameter set to 0.05 here. The APAAC descriptor focuses
on the order of amino acids in the sequence [26]. Particularly, APAAC consists of Pc(i) and
Pcj(i) as defined by Equation (7) where τd reflects the sequence-order information. Pi(i) is
the value of the i-th amino acid for the j-th characteristic. The remaining parameters are
identical to APAAC. The various trait descriptors represent various aspects of the amino
acid sequence’s physicochemical properties.

τd =
∑N−d

i=1 Pi(i)×Pj(i+d)
N−d d = 1, 2, 3, . . . . . . 30

Pc(i) =
Ni

1+ω×∑30
i=1 θi

Xcj(i) =
ω×θi

1+ω×∑30
i=1 θi

(7)

2.4. Feature Optimization and Selection

We employed the genetic algorithm based on the self-assessment-report (GA-SAR)
algorithm developed by Charoenkwan et al. [27] to select a minimal number of m features
from a large number of n features while simultaneously optimizing the model’s parameters.
To date, the GA-SAR has been successfully applied in a number of computational biology
studies [27–29]. The GA-SAR’s chromosome contains two main genes: (i) binary genes for
the feature selection purpose, and (ii) parametric genes for the parameter optimization of
SVM classifier. For convenience of discussion, the gene and chromosome will be referred
to as GA-gene and GA-chrom, respectively. More details on the GA-SAR algorithm were
reported in our previous studies [27–29].

2.5. Feature Representation Learning Method

Wei et al. [19] were the first to propose the feature representation learning method.
Several previous studies [19,28–34] have found that this method is effective and can im-
prove the model’s discriminative ability. This technique makes a significant contribution in
two areas: solving high-dimensional feature space and providing enough information to
develop an accurate predictive model. We modified this feature representation learning
method by combining multiple ML algorithms in this paper. The procedure of the develop-
ment of the proposed UMPred-FRL by using the feature representation learning method is
described in detail as follows:

Step 1. Baseline model construction. We used seven different feature encoding schemes
(AAC, APAAC, CTDC, CTDD, CTDT, DPC, and PAAC) derived from three major groups
(composition-based features, composition-transition-distribution-based features, and pseudo-
amino acid composition-based features). These characteristics were then used to create a set
of baseline models using six well-known ML algorithms (ET, KNN, LR, PLS, RF, and SVM).
Using the default parameters, 42 baseline models (6 MLs × 7 encodings) were created. All
baseline models in this step were created using the Scikit-learn package in Python’s default
parameters (version 0.22) [35].

Step 2. Generation of new feature representations. All 42 baseline models were trained
using a 10-fold cross-validation procedure and then used to generate three types of features
containing probabilistic feature (PF), class feature (CF) and the combination of PF and CF
(CPF). The PF is based on the predicted probability scores of umami peptides which is in
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the range of 0–1. In case of the CF, the protein sequence P is labeled as 1 (umami peptides)
if its predicted probability score is greater than 0.5, otherwise the protein sequence P is
labeled as 0 (non-umami peptides). As a result, the protein sequence P was represented to
42-D, 42-D and 84-D feature vectors for PF, CF, and PCF, respectively. In this study, the PF,
CF, and PCF were considered as new feature vectors.

Step 3. Development of the final meta-predictor. The final meta-predictor was built
individually combining the SVM algorithm (mSVM) with each of the three newly created
feature vectors (CF, PF, and CPF). In this process, the GA-SAR algorithm was used to
identify informative features of CF, PF, and CPF, followed by simultaneous tuning of the
mSVM models’ parameters (C) using a 10-fold cross-validation procedure to improve the
discriminative power of the mSVM model (Supplementary Table S1). Herein, the parameter
(C ∈ {1, 2, 4, 8, 16, 32}) and n features were used as input for optimization via the GA-SAR
algorithm. Therefore, the GA-chrom contains n binary GA-genes ( fi = 1) for identifying
important features and 3-bit GA-genes for determining the C parameter. The ith feature is
used for development of the mSVM model where fi = 1; otherwise the ith feature is not
used. Finally, the feature set with the highest MCC was chosen as the best and was used to
create the final meta-predictor.

2.6. Performance Evaluation

We used five commonly used binary classification metrics for performance evaluation:
BACC, MCC, Sn, accuracy (ACC), and specificity (Sp) [36]. These metrics are defined as
follows:

ACC =
TP + TN

(TP + TN + FP + FN)
(8)

Sn =
TP

(TP + FN)
(9)

Sp =
TN

(TN + FP)
(10)

BACC = (Sn + Sp)× 0.5 (11)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(12)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false
positives, and false negatives, respectively. We also plotted receiver operating characteristic
(ROC) curves to visualize the overall performance of different models, as well as computing
their area under the ROC curve (AUC). The model with the highest AUC was determined
to be the best [37–41].

3. Results
3.1. Performance of Different Baseline Models

We comprehensively compared the performance of 42 baseline models trained using
seven different feature-encoding schemes (AAC, APAAC, CTDC, CTDD, CTDT, DPC,
and PAAC) with six well-known ML algorithms (ET, KNN, LR, PLS, RF, and SVM) by
performing repeated stratified 10-fold cross-validation tests with 10 repetitions. Finally, the
average performances obtained from the repeated stratified 10-fold cross-validation scheme
were used to determine the best combination of encoding and ML algorithm that were
beneficial to umami peptide identification. Results from cross-validation and independent
tests are provided in Figures 2 and 3 and Supplementary Tables S2 and S3.

As shown in Figure 2 and Supplementary Table S2, ET, KNN, LR, PLS, RF, and SVM
models trained with PAAC, APAAC, CTDC, ACC, PAAC, and AAC descriptors achieved
best performances (BACC, MCC) of (0.834, 0.678), (0.818, 0.642), (0.815, 0.657), (0.804,
0.639), (0.832, 0.686), and (0.821, 0.665), respectively. Furthermore, in order to conduct
a comparative analysis of the six ML models, the average prediction results of each ML
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model across the seven feature encodings were calculated and summarized in Figure 2A,C.
Particularly, it was found that from amongst the six ML models, ET, RF, and SVM provided
the best cross-validation results across all five metrics (i.e., ACC, BACC, Sn, Sp, and MCC).
ACC, MCC, and AUC were provided by these three ML models in the ranges of 0.838–0.845,
0.620–0.636 and 0.901–0.911, respectively. Meanwhile, KNN outperformed ET, RF, and
SVM with an Sn of 0.715.

In order to select the best baseline model, we examined the prediction results of
42 baseline models using 10-fold cross-validation and independent tests. Figure 3A,B as
well as Supplementary Table S3 depict the performance of the 42 baseline models. On
the UMP-TR dataset, RF-PAAC and ET-PAAC first-best and second-best baseline models
outperformed the other baseline models in four out of six metrics (ACC, BACC, Sn, and
MCC). RF-PAAC and ET-PAAC models, in particular, provided maximum ACC, BACC,
Sn, and MCC values of 0.864, 0.834, 0.765 and 0.686, respectively. Figure 3C,D as well
as Supplementary Table S3 show that RF-PAAC and ET-PAAC models can effectively
identify umami peptides with ACC > 0.820, BACC > 0.758, and MCC > 0.563, as evaluated
on independent tests. Based on performance comparisons in Figures 2 and 3 as well as
Supplementary Tables S2 and S3, the baseline model trained using the RF algorithm and
PAAC encoding is considered to be the best baseline model.
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3.2. Performance of Class, Probabilistic and Fused Information

Instead of making an effort to select the best one from amongst the 42 baseline models,
we integrated their individual strengths to develop an ensemble-based model using the
meta-predictor approach. Several previous studies have demonstrated that ensemble-
based models are able to achieve more accuracy compared with their constituent baseline
models [19,28–30,32,33,42]. In this study, we employed three different types of new feature
representations (CF, PF, and CPF) by training and optimizing three different mSVM models
with repeated stratified 10-fold cross-validation tests with 10 repetitions. Tables 1 and 2
show the results of their cross-validation and independent tests. As shown in Table 1, PF
outperforms CF and CPF in four out of six metrics (ACC, BACC, Sp, and MCC). Particularly,
the ACC, BACC, Sp, and MCC of PF were 0.860, 0.830, 0.914, and 0.677, respectively. To
improve the predictive ability of our feature representation, the GA-SAR algorithm was
used to individually determine the optimal features on each of the three feature vectors.
Finally, the GA-SAR algorithm identified 10, 7, and 8 informative features for CF, PF and
CPF, respectively.

We observed significant improvements in the optimal features of PF by comparing the
predictive performance of the original (42D) and newly informative (7D) features, achieving
3.7%, 4.0%, 4.9%, 3.2%, 8.8%, and 3.0% improvements in terms of ACC, BACC, Sn, SP, MCC,
and AUC (Table 1). Surprisingly, the 7 informative features of PF also had the best predictive
performance when compared to the best features of CF and CPF. In this paper, the 7 baseline
models of SVM-AAC, PLS-AAC, SVM-CTDC, RF-DPC, RF-CTDC, PLS-APAAC and LR-
DPC were used to generate the 7 informative features of PF. In the case of independent
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test results, we discovered that the optimal PF features performed slightly better than the
optimal CF and CPF features (Table 2). Taking both cross-validation and independent test
results into account, our new feature representations (the 7 informative features of PF)
demonstrated stable performance on both training and independent datasets and were
deemed the best feature set to develop the final meta-predictor (termed UMPred-FRL).

Table 1. Cross-validation results for CF, PF, CFP and their optimal sets.

Feature Set Dimension ACC BACC Sn Sp MCC AUC

CF 42 0.854 0.823 0.741 0.906 0.662 0.903
PF 42 0.860 0.830 0.746 0.914 0.677 0.909

CPF 84 0.855 0.827 0.749 0.905 0.667 0.915
Optimal CF 10 0.875 0.870 0.857 0.884 0.729 0.887
Optimal PF 7 0.898 0.870 0.795 0.945 0.765 0.940

Optimal CPF 8 0.893 0.868 0.797 0.938 0.755 0.895

Table 2. Independent test results for CF, PF, CFP and their optimal sets.

Feature Set Dimension ACC BACC Sn Sp MCC AUC

CF 42 0.876 0.842 0.750 0.934 0.707 0.934
PF 42 0.820 0.763 0.607 0.918 0.565 0.930

CPF 84 0.798 0.698 0.429 0.967 0.505 0.934
Optimal CF 10 0.876 0.881 0.893 0.869 0.732 0.904
Optimal PF 7 0.888 0.860 0.786 0.934 0.735 0.919

Optimal CPF 8 0.888 0.870 0.821 0.918 0.739 0.898

3.3. New Feature Representations Improve the Prediction Performance

We examined the efficacy of our new feature representations by comparing their per-
formance to that of seven different feature descriptors (AAC, APAAC, CTDC, CTDD, CTDT,
DPC, and PAAC). In particular, we used an SVM classifier to train and evaluate the seven
feature descriptors in order to compare them fairly with our new feature representations.
Tables 3 and 4 show the results of their cross-validation and independent tests, respectively.

From Table 3, it can be clearly seen that our new feature representations exhibited
the best overall cross-validation performance in terms of five out of six metrics (ACC,
BACC, Sn, MCC, and AUC). In particular, the ACC, BACC, Sn, and MCC of our feature
representations were 4.2–8.6%, 5.0–13.6%, 6.8–27.5% and 10.0–21.6%, respectively, higher
than those of other descriptors. Furthermore, our feature representations’ independent test
results exhibited a similar tendency to the cross-validation results (Table 4). To confirm
the discriminative power of our feature representations, the feature space distribution was
compared with the top two feature descriptors (AAC and CTDC) using the t-distributed
stochastic neighbor embedding (t-SNE). Therefore, t-SNE plots were created for both the
training and independent test datasets in this study. Figure 4 depicts the distribution of the
feature space in a 2D feature space between umami (red spots) and non-umami (green spots)
peptides. As shown in Figure 4C,F, the feature space of our feature representations showed
a more distinct separation of the margins between two clusters than AAC (Figure 4A,D)
and CTDC (Figure 4B,E) descriptors. This demonstrated that our feature representation
learnings outperformed conventional feature descriptors in terms of discriminative power.
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Table 3. Cross-validation results of new feature representations and conventional feature descriptors.

Feature Dimension ACC BACC Sn Sp MCC AUC

AAC 20 0.856 0.821 0.727 0.915 0.665 0.913
APAAC 22 0.854 0.818 0.719 0.917 0.660 0.917
CTDC 39 0.854 0.820 0.727 0.912 0.661 0.911
CTDD 195 0.850 0.810 0.700 0.920 0.649 0.914
CTDT 39 0.834 0.786 0.655 0.917 0.609 0.875
DPC 400 0.812 0.734 0.520 0.947 0.549 0.892

PAAC 21 0.854 0.818 0.719 0.916 0.658 0.919
Optimal PF 7 0.898 0.870 0.795 0.945 0.765 0.940

Table 4. Independent test results of new feature representations and conventional feature descriptors.

Feature Dimension ACC BACC Sn Sp MCC AUC

AAC 20 0.843 0.789 0.643 0.934 0.621 0.918
APAAC 22 0.831 0.780 0.643 0.918 0.595 0.923
CTDC 39 0.831 0.780 0.643 0.918 0.595 0.923
CTDD 195 0.809 0.764 0.643 0.885 0.546 0.894
CTDT 39 0.798 0.756 0.643 0.869 0.523 0.872
DPC 400 0.798 0.708 0.464 0.951 0.502 0.908

PAAC 21 0.820 0.763 0.607 0.918 0.565 0.924
Optimal PF 7 0.888 0.860 0.786 0.934 0.735 0.919
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3.4. Mechanistic Interpretation of UMPred-FRL

To determine which features were the most important for the proposed UMPred-
FRL and its constituent baseline models, we applied the SHapley Additive exPlanation
(SHAP) approach. The SHAP method has been widely utilized to improve interpretable
predictions and measure the features’ value for the predictions of complex ML models,
such as ensemble or deep learning models [43,44]. It should be noted that positive and
negative SHAP values drive the predictions towards umami and non-umami peptides,
respectively. As can be seen from Figure 5, the top three PFs consist of three baseline models
of PLS-AAC, SVM-AAC, and SVM-CTDC. It became apparent that when the top three PFs
had high values, their corresponding SHAP values would also positively influence the
model’s prediction of umami peptides. Similarly, by taking into consideration the feature
importance from PLS-AAC and SVM-AAC, it was found that Glu and Asp were the top
two informative features that exhibited positive SHAP values (Supplementary Figure S1),
thereby indicating that Glu and Asp might be crucial factors responsible for umami tastes.
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3.5. Comparison of UMPred-FRL with Its Constituent Baseline Models and the Existing Method

To assess the efficacy and robustness of the proposed UMPred-FRL, we first compared
it to the top five baseline models with the highest cross-validation MCC (RF-PAAC, ET-
PAAC, RF-APAAC, ET-APAAC, and SVM-AAC). Cross-validation results (Figure 6A,B)
show that UMPred-FRL clearly outperforms the top five baseline models in terms of all six
metrics, achieving 3.4–4.4%, 3.6–4.9%, 3.0–6.8%, 2.5–4.9%, 7.9–10.0%, and 1.5–2.7% improve-
ments in ACC, BACC, Sn, Sp, MCC, and AUC, respectively. UM-Pred-FRL also performed
admirably in the independent test when compared to the top five baseline models. In par-
ticular, ACC, BACC, Sn, and MCC of UMPred-FRL were 4.5–6.8%, 6.2–10.7%, 10.7–21.5%,
and 11.1–17.2% higher than those of other baseline models, respectively (Figure 6C,D).
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To demonstrate the robustness of UMPred-FRL, its performance was compared to
that of the existing method (iUmami-SCM). As such, the 10-fold cross-validation and
independent test results are shown in Figure 7 and Table 5. On the UMP-TR dataset, as
shown in Figure 7A,B, UMPred-FRL achieves very comparable performance (ACC, BACC,
and AUC) to iUmami-SCM (0.921 vs. 0.935, 0.901 vs. 0.939, and 0.938 vs. 0.945, respectively).
On the other hand, it was clear that UMPred-FRL could outperform iUmami-SCM in five
out of six metrics on the independent test dataset (Figure 7C,D). In particular, BACC,
Sn, and MCC of UMPred-FRL were 3.6%, 7.2%, and 5.6%, respectively, higher than the
corresponding values afforded by iUmami-SCM. Remarkably, the outstanding Sn and MCC
indicated that the proposed UMPred-FRL is capable of eliminating the number of false
negatives and false positives on unknown samples (Table 5). Taken together, comparative
results indicated that UMPred-FRL is more effective than, and could outperform, the
existing method as well as its constituent baseline models for the identification of umami
peptides.

Table 5. Cross-validation and independent test results of UMPred-FRL and the existing method.

Cross-
Validation Method ACC BACC Sn Sp MCC AUC

10-fold CV
iUmami-SCM 0.935 0.939 0.947 0.930 0.864 0.945
UMPred-FRL 0.921 0.901 0.847 0.955 0.814 0.938

Independent
test

iUmami-SCM 0.865 0.824 0.714 0.934 0.679 0.898
UMPred-FRL 0.888 0.860 0.786 0.934 0.735 0.919
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4. Conclusions

In this study, we developed UMPred-FRL, a novel machine-learning meta-predictor
for the accurate identification of umami peptides based on sequence information and
without knowledge of the protein’s 3D structure. UMPred-FRL built 42 baseline models
by exploring six different ML classifiers with seven different feature encodings using the
feature representation learning method. These baseline models were then used to generate
predicted probabilistic scores of umami peptides, which were considered as new feature
representations. Finally, the resulting features were combined and chosen in order to
create a more stable meta-predictor based on the SVM algorithm. Our cross-validation
and independent test results demonstrated the efficacy and robustness of UMPred-FRL
by outperforming its constituent baseline models. Furthermore, on the independent test
dataset, UMPred-FRL consistently outperformed the existing method (iUmami-SCM)
in terms of BACC (0.860 vs. 0.824), Sn (0.786 vs. 0.714), and MCC (0.735 vs. 0.679),
highlighting its effectiveness and generalizability. We discovered that our new feature
representations were more discriminative in capturing the key information of umami
peptides when compared to seven well-known feature encodings. Finally, in order to
maximize the utility of our proposed predictor, we set up a publicly accessible web server
at http://pmlabstack.pythonanywhere.com/UMPred-FRL (accessed on 1 December 2021).
It is anticipated that UMPred-FRL will be a powerful tool for the discovery of candidate
peptides with potential umami sensory properties as well as the characterization of umami
peptide mechanisms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222313124/s1.
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