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Abstract 

Background: In the emergency room, clinicians spend a lot of time and are exposed to mental stress. In addition, 
fracture classification is important for determining the surgical method and restoring the patient’s mobility. Recently, 
with the help of computers using artificial intelligence (AI) or machine learning (ML), diagnosis and classification of 
hip fractures can be performed easily and quickly. The purpose of this systematic review is to search for studies that 
diagnose and classify for hip fracture using AI or ML, organize the results of each study, analyze the usefulness of this 
technology and its future use value.

Methods: PubMed Central, OVID Medline, Cochrane Collaboration Library, Web of Science, EMBASE, and AHRQ 
databases were searched to identify relevant studies published up to June 2022 with English language restriction. The 
following search terms were used [All Fields] AND (", "[MeSH Terms] OR (""[All Fields] AND "bone"[All Fields]) OR "bone 
fractures"[All Fields] OR "fracture"[All Fields]). The following information was extracted from the included articles: 
authors, publication year, study period, type of image, type of fracture, number of patient or used images, fracture 
classification, reference diagnosis of fracture diagnosis and classification, and augments of each studies. In addition, AI 
name, CNN architecture type, ROI or important region labeling, data input proportion in training/validation/test, and 
diagnosis accuracy/AUC, classification accuracy/AUC of each studies were also extracted.

Results: In 14 finally included studies, the accuracy of diagnosis for hip fracture by AI was 79.3–98%, and the accu‑
racy of fracture diagnosis in AI aided humans was 90.5–97.1. The accuracy of human fracture diagnosis was 77.5–93.5. 
AUC of fracture diagnosis by AI was 0.905–0.99. The accuracy of fracture classification by AI was 86–98.5 and AUC 
was 0.873–1.0. The forest plot represented that the mean AI diagnosis accuracy was 0.92, the mean AI diagnosis AUC 
was 0.969, the mean AI classification accuracy was 0.914, and the mean AI classification AUC was 0.933. Among the 
included studies, the architecture based on the GoogLeNet architectural model or the DenseNet architectural model 
was the most common with three each. Among the data input proportions, the study with the lowest training rate 
was 57%, and the study with the highest training rate was 95%. In 14 studies, 5 studies used Grad‑CAM for highlight 
important regions.

Conclusion: We expected that our study may be helpful in making judgments about the use of AI in the diagnosis 
and classification of hip fractures. It is clear that AI is a tool that can help medical staff reduce the time and effort 
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Background
In the emergency room, clinicians spend a lot of time and 
are exposed to mental stress [1]. There are many things 
to check due to various images and laboratory tests, and 
fatigued clinicians (especially residents) are prone to 
misdiagnosis [2]. According to previous studies, it has 
been reported that about 2–10% of hip fractures are mis-
diagnosis [3]. Early diagnosis and treatment of elderly 
patients with hip fracture are very important for the clin-
ical course [4]. Delay in diagnosis or surgery causes com-
plications such as pneumonia and psoa in these patients 
and increases morbidity and mortality rates [1]. This not 
only reduces the patient’s quality of life, but also causes 
economic exhaustion.

Diagnosis can be defined as determining the cause and 
characteristics of an individual patient’s disease, and clas-
sification is mainly for creating a relatively homogeneous 
population through standardized criteria, which is mainly 
an important factor in disease research [5]. In addition, 
fracture classification is important for determining the 
surgical method and restoring the patient’s mobility [6]. 
Since the surgical method is directly related to the medi-
cal cost, several countries have provided guidelines for 
treatment methods according to the classification of hip 
fractures [7]. However, classifying fractures from a lot of 
image information is time-consuming [8].

Currently, most medical institutions use digital medical 
imaging systems, which overcomes the temporal and spa-
tial limitations of access to image information.[9] In addi-
tion, recently, with the help of computers using artificial 
intelligence (AI) or machine learning (ML), diagnosis and 
classification of hip fractures can be performed easily and 
quickly [10]. Studies reporting the effects of applying AI 
or ML to hip fracture detection used various image infor-
mation such as computed tomography as well as radio-
graphs, and presented various results on the usefulness of 
diagnosis and the accuracy of fracture classification.

Therefore, the purpose of this systematic review is to 
search for studies that diagnose and classify for hip frac-
ture using AI or ML, organize the results of each study, 
analyze the usefulness of this technology and its future 
use value.

Methods
Study eligibility criteria
Studies were selected based on the following inclu-
sion criteria: (1) studies using AI or ML techniques for 

diagnosis or classification of hip fracture; and (2) studies 
reporting on the type of imaging information used; and 
(3) studies reporting on statistical analysis of accuracy 
or area under the ROC (receiver operating character-
istic) curve (AUC) for diagnosis or classification of hip 
fracture. Studies were excluded if they failed to meet the 
above criteria.

Search methods for identification of studies
PubMed Central, OVID Medline, Cochrane Collabo-
ration Library, Web of Science, EMBASE, and AHRQ 
databases were searched to identify relevant studies pub-
lished up to June 2022 with English language restriction. 
The following search terms were used [All Fields] AND 
(", "[MeSH Terms] OR (""[All Fields] AND "bone"[All 
Fields]) OR "bone fractures"[All Fields] OR "fracture"[All 
Fields]). Manual search was also conducted for pos-
sibly related references. Two of us reviewed the titles, 
abstracts, and full texts of all potentially relevant studies 
independently, as recommended by the Cochrane Col-
laboration. Any disagreement was resolved by the third 
reviewer. We assessed full-text articles of the remaining 
studies according to the previously defined inclusion and 
exclusion criteria, and then selected eligible articles. The 
reviewers were not blinded to authors, institutions, or the 
publication.

Data extraction
The following information was extracted from the 
included articles: authors, publication year, study period, 
type of image, type of fracture, number of patient or 
used images, fracture classification, reference diagnosis 
of fracture diagnosis and classification, and augments of 
each studies. In addition, AI name, CNN architecture 
type, ROI or important region labeling, data input pro-
portion in training/validation/test, and diagnosis accu-
racy/AUC, classification accuracy/AUC of each studies 
were also extracted.

Results
The initial search identified 123 references from the 
selected databases and 4 references from manual search-
ing. Eighty-two references were excluded by screening 
the abstracts and titles for duplicates, unrelated articles, 
case reports, systematic reviews, and non-comparative 
studies. The remaining 45 studies underwent full-text 
reviews, and subsequently, 31 studies were excluded. 

required for hip fracture diagnosis with high accuracy. Further studies are needed to determine what effect this 
causes in actual clinical situations.

Keywords: Hip fracture, Artificial intelligence, Machine learning, Diagnosis, Classification



Page 3 of 13Cha et al. Journal of Orthopaedic Surgery and Research          (2022) 17:520  

Finally, 14 studies are included in this study [1, 7, 8, 11–
21]. The details of the identification of relevant studies 
are shown in the flow chart of the study selection process 
(Fig. 1).

In 14 studies, the type of image used for AI learning 
was all X-ray. However, one study additionally used CT 
images and another additionally used CT and MRI [8, 
18]. Four studies included only the neck [11, 16, 17, 21], 
and two studies included only the intertrochanter frac-
ture [8, 18]. The rest of the studies included both frac-
tures. There were 4 studies that reported the accuracy of 
fracture classification by AI [8, 14–16]. The number of 
images used varied from 234 to 10,484. The demographic 
data including reference diagnosis and augments method 
of each studies are showed in Table 1.

The accuracy of diagnosis for hip fracture by AI was 
79.3–98%, and the accuracy of fracture diagnosis in AI 
aided humans was 90.5–97.1. The accuracy of human frac-
ture diagnosis was 77.5–93.5. AUC of fracture diagnosis 
by AI was 0.905–0.99. The accuracy of fracture classifica-
tion by AI was 86–98.5 and AUC was 0.873–1.0 (Table 2). 
The forest plot of AI accuracy and AUC of diagnosis and 
classification is presented in Figs. 2, 3, 4, 5. In the included 
study, the mean AI diagnosis accuracy was 0.92 (Fig.  2), 
the mean AI diagnosis AUC was 0.969 (Fig. 3), the mean 
AI classification accuracy was 0.914 (Fig. 4), and the mean 
AI classification AUC was 0.933 (Fig. 5).

Among the included studies, the architecture based 
on the GoogLeNet architectural model [7, 11, 18] or the 
DenseNet architectural model [13, 14, 20] was the most 
common with three each. Among the data input propor-
tions, the study of Adams et  al. had the lowest training 
rate of 57% [11], and the study of Yamada et al. had the 
largest training rate of 95% [19]. In 14 studies, 5 studies 
used Grad-CAM for highlight important regions. The 
information on AI for all included studies is presented in 
Table 3 [1, 8, 16, 20, 21].

Discussions
Expected effects of AI in hip fracture diagnosis
As human lifespans prolong and the elderly population 
grows, the socioeconomic problems associated with hip 
fractures and postoperative care are public concerns 
worldwide [13]. Early diagnosis and treatment are essen-
tial to preserving patient function, improving quality of 
life and alleviating economic burden. Rapid diagnosis 
of non-displaced hip fractures by human could be diffi-
cult and sometimes requires the use of additional radio-
graphs, bone scans, CT, or MRI. But, these additional 
tests are not always available in all hospitals. In addition, 
demineralization and overlying soft tissues may inter-
fere with diagnosis of hip fracture [18]. Delayed diag-
nosis and treatment may lead to complications, such as 
malunion, osteonecrosis, and arthritis [19]. Moreover, as 

Fig. 1 The flow chart of the study selection process
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Table 2 Accuracy and AUC of fracture diagnosis and fracture classification in included studies

Fx fracture, AI artificial intelligence, AUC  area under the ROC curve, ROC receiver operating characteristic, AI + human: AI aided human

Study Fx. Diagnosis Fx. classification

Accuracy (%) AUC Accuracy (%) AUC 

Adams [11] 88.1–94.4 (AI)
93.5 (specialist)
92.9 (residents)
90.5 (AI + medically naïve)
87.6 (medically naïve)

0.94–0.98 (AI)

Urakawa [12] 95.5 (AI)
92.2 (human)

0.984 (AI)
0.969 (human)

Cheng [13] 91 (AI) 0.98 (AI)

Krogue [14] 93.7 (AI) 0.975 (AI) 91.2 (AI) 0.873–1.00 (AI)

Yu [15] 96.9 (AI) 0.9944 (AI) 93.9–98.5 (AI) 0.95–0.99 (AI)

Mutasa [16] 92.3 (AI) 0.92 (AI) 86 (AI) 0.96 (AI)

Beyaz [17] 79.3 (AI)

Mawatari [18] 0.832 (human)
0.905 (AI)
0.876 (AI + human)

Yamada [19] 98 (AI)

Cheng [10] 92.67(AI)
97.1 (AI + human)

Yoon [8] 97 (AI) 90 (AI)

Sato [1] 96.1 (AI)
84.7 (human)
91.2 (AI + human)

0.99(AI)

Bae [21] 97.1 (AI) 0.977 (AI)

Murphy [7] 77.5 (human)
92 (AI)

0.98 (AI) for normal
0.99 (AI) for neck Fx
0.97(AI) for ITC Fx

Fig. 2 Forest plot of artificial intelligence (AI) diagnosis accuracy
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total number of imaging and radiological examinations 
has increased, radiology departments cannot report all 
acquired radiographs in timely manner [7]. For this rea-
son, several studies on detecting hip fractures using ML 
have already been reported [1, 7, 8, 11–21]. Early diag-
nosis of hip fracture by AI algorithm in clinical course 
could help reduce medical costs, facilitate further pre-
ventive practices, and increase the quality of health care 
[20]. It also improves the allocation of resources, reduce 
the need for unnecessary consultations, and facilitate 
faster patient disposition. In particular, physicians can 
focus on conceptually more demanding tasks in high-
volume clinics. However, reports on the effectiveness of 
early diagnosis of hip fractures by AI algorithm seem to 
be insufficient. It is considered that further studies are 
needed.

CNN architecture used for hip fracture diagnosis
In this study, several CNN structures were used for 
radiograph image analysis in each study for hip fracture 
diagnosis. Among the included studies, CNNs using 
DenseNet or GoogLeNet architecture models were 
used the most. These two CNNs are inception architec-
ture, which are deep CNNs with an architecture design 
composed of repeating components [22]. GoogLenet is 
a CNN architecture with 22 layers and is widely used in 
image analysis such as radiographs because of its excel-
lent ability to recognize visual patterns [23]. In addition, 
GoogLeNet has 9 inception modules including 1 × 1 con-
volution which allows to derive various characteristics by 
accumulating the feature maps generated in the previous 
layer [22]. This structure of GoogLenet allows to extract 
features from different layers without the need for addi-
tional computational burdens [24]. DenseNet is a Dense 
Convolution Network, a CNN that can receive input 
from all previous layers through concatenation in a more 
advanced architecture than that of GoogleNet. DenseNet 
has the advantage of increasing computational efficiency 
through a compact network and being able to train by 
considering more diverse feature sets in all layers [25]. In 
addition, Inception-V3 and Xception used in the included 
studies are the more advanced CNN architectures of 
GoogLenet. These results suggested that researchers have 
been applied progressively advanced CNN architectures 
of AI for hip fracture diagnosis (Table 3).

Diagnosis accuracy in AI versus human: Can AI replace 
human role in hip fracture diagnosis?
In the results of the articles included in our study, the 
accuracy of diagnosis for hip fracture by AI algorithm 
was over 90%, except for the results of Beyaz et al., and 
AUC of fracture diagnosis was over 0.9, which was very 
high [17]. Also, the diagnostic accuracy of AI was higher 

in a comparative study on the accuracy of hip fracture 
diagnosis between AI and human. Urakawa et  al. pre-
sented a AI model that detected intertrochanteric frac-
tures with an accuracy of 95.5% and an AUC of 0.984 
[12]. This was higher than human’s diagnostic accuracy of 
92.2% and AUC of 0.969. Adams et al. reported a conven-
tional neural network model to diagnose femoral neck 
fractures with an accuracy of 88.1–94.4%  [11]. These 
figure is also comparable to experts and resident`s diag-
nostic accuracy of 93.5 and 92.9%. In the study of Cheng 
et  al. and Sato et  al., human diagnostic accuracy was 
lower than that by AI algorithm [1, 20]. Nevertheless, it 
is still questionable whether can AI replace human role in 
hip fracture diagnosis. Bae et al. used AI to diagnose fem-
oral neck fracture after deep learning of AI using 4,189 
images. Diagnostic accuracy of AI algorithm was 97.1%. 
However, they reported that it is difficult to detect a non-
displaced fracture of the femoral neck, despite high diag-
nostic accuracy of AI [21]. This means that AI can reveal 
the limits of diagnosis in cases where AI is not trained or 
lacks learning. In addition, since all AI systems included 
in this study are not integrated with other clinical infor-
mation, we consider that the clinical suspicion of human 
for occult fracture through evaluation of the patient’s 
overall condition cannot yet be simulated by AI algo-
rithm. Mawatari et al. also argued that, because the AUC 
values of AI aided experts were higher than the AI algo-
rithm alone, a valid diagnosis could not be obtained by 
the radiograph alone, and it was inevitably affected by the 
quality of AI algorithm [18]. Thus, we believed that AI 
algorithm does not totally replace human intelligence in 
the current clinical environment; however, AI algorithms 
can complement and augment the ability and knowledge 
of physicians.

The increase in human dependence on hip fracture 
detection using AI algorithm may be another issue 
because it is difficult and time-consuming for doctors 
to make their own clinical judgments by synthesizing 
the results of examinations performed face-to-face with 
patients [20]. To solve this issue, Cheng et  al. made the 
hip fracture detection site by AI to be highlighted and 
displayed so that physicians could check the results of 
the AL algorithm and make a final clinical judgment [20]. 
With the development of technology, the AI algorithm 
will further develop, and the tendency of humans to rely 
on AI will increase further in future. Further research is 
needed for further solutions to this problem in future.

Efforts for AI deep learning and high diagnostic accuracy 
for hip fracture
Because deep learning of AI automatically and adaptively 
learn features from data, large and clean datasets are 
required [17]. Better results for detection of hip fracture 
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by AI are decided according to the number of images. In 
our study, we summarized the 2 methods suggested by 
previous studies to overcome this. The first is data aug-
mentation and generation where data are manipulated 
to artificially enlarge the dataset. The number of patients 
visiting a single hospital is limited, and acquiring image 
information from other institutions may cause a problem 

of personal information leakage. Sato et al. created aug-
mented 10,484 images by classifying the images of 4851 
patients into fractured side and normal side according to 
the time they were taken, and used it for deep learning 
of AI [1]. Mutasa et al. created 9063 augmented images 
with 737 hip fracture images and 326 normal images 
in 550 patients, and Beyaz et  al. also generated 2106 

Fig. 3 Forest plot of AI diagnosis area under the curve (AUC)

Fig. 4 Forest plot of AI classification accuracy
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augmented images from 234 radiographs of 65 patients 
[16, 17]. The second is to use various type of image infor-
mation. Yu et al. reported that a distinctive fracture line 
or cortical angular deformity of a neck fracture is easy to 
detect in a single radiographic view, but a larger sample 
size is required for intertrochanteric fractures with com-
plex and multiple fracture lines because the spectrum of 
fracture morphology is large [15]. Also, soft tissue shad-
ing or femur alignment variation may affect the detection 
of fractures by AI [13]. To overcome this, Yamada et al. 
argued that the fracture detection rate could be increased 
by adding a lateral view as well as a hip AP view [19]. On 
the other hand, Yoon et  al. reported that CT images as 
well as radiographs were used for fracture classification 
of intertrochanteric fractures, reducing time consump-
tion due to fracture classification and helping to plan 
accurate surgery [8]. Also, Mawatari et  al. used MRI as 
well as CT for hip fracture detection [18]. However, this 
has a disadvantage in that additional cost is consumed 
and it is difficult to obtain a normal hip lateral view.

As AI can quickly process large amounts of patient 
information, it has incredible potential in diagnosing 
and classifying patients’ diseases [26]. Especially the use-
fulness of AI is being studied in the trauma prediction, 
which has a wide range of individual differences in the 
number and severity of injuries due to the involvement 
of many external and internal factors [27]. The present 
study is expected to be helpful in verifying the effective-
ness of AI in diagnosing these specific diseases.

There are several limitations in our study. First, we 
did not consider the type of AI algorism and degree 

of training of AI algorism. Second, we did not con-
sider the quality of radiographs for deep learning. The 
selected images are likely to have high quality. Also, 
these images can only represent characteristics of a 
specific age and sex. Third, implants used for surgical 
treatment of hip fracture were not considered.

Conclusions
We expected that our study may be helpful in mak-
ing judgments about the use of AI in the diagnosis and 
classification of hip fractures. It is clear that AI is a tool 
that can help medical staff reduce the time and effort 
required for hip fracture diagnosis. Further studies are 
needed to determine what effect this causes in actual 
clinical situations.
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