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Abstract: Dendritic cells (DC) are powerful cells that play critical roles in anti-tumor immunity, and
their use in cancer immunotherapy unlocks hidden capabilities as an effective therapeutic. In order
to maximize the full potential of DC, we developed a DC vaccine named CellgramDC-WT1 (CDW).
CDW was pulsed with WT1, an antigen commonly expressed in solid tumors, and induced with
zoledronate to aid DC maturation. Although our previous study focused on using Rg3 as an inducer
of DC maturation, problems with quality control and access led us to choose zoledronate as a better
alternative. Furthermore, CDW secreted IL-12 and IFN-γ, which induced the differentiation of naïve
T cells to active CD8+ T cells and elicited cytotoxic T lymphocyte (CTL) response against cancer
cells with WT1 antigens. By confirming the identity and function of CDW, we believe CDW is an
improved DC vaccine and holds promising potential in the field of cancer immunotherapy.

Keywords: DC vaccine; CD141; dendritic cells; zoledronate; T-cell activation; cancer immunotherapy;
solid tumor; cancer antigens; Wilms’ tumor1 (WT1); tumor-associated antigens

1. Introduction

Cancer is the leading cause of death across the world, and while traditional modes of
treatments include surgery, chemotherapy, and irradiation, they often cause adverse side
effects due to the inability to differentiate between cancerous and normal cells [1]. However,
recent advancements in the field of immunotherapy allowed for the development of cancer
vaccines, which aim to activate the body’s own immune system to specifically target cancer
cells and consequently minimize side effects [2]. Cancer vaccines primarily use tumor-
associated antigens or tumor-specific antigens to activate the antigen-specific lymphocytes
of the immune system [3]. Activated lymphocytes, predominantly T cells, assume effector
functions such as cytotoxicity and cytokine production to control cancer progression [4].
Different types of cancer vaccines utilize a specific set of immune cells, such as natural
killer (NK) cells [5] and dendritic cells (DC) [6]. Of these, DC are antigen-presenting cells
(APC) and play a critical role in activating the immune response via T cells. The main
characteristic of DC involves the ability to capture antigens and process the protein into a
peptide to be presented to T cells by major histocompatibility complex (MHC) molecules.
However, DC comprise a heterogeneous population with each subset that carries distinct
phenotypes and functions [7].

DC are divided largely into classical/conventional DC (cDC), plasmacytoid DC (pDC),
and monocyte-derived DC (mo-DC). There are two broad groups of cDC: type 1 DC
(cDC1), which primarily presents antigens using MHC class I to elicit CTL response from
CD8+ T cell (CTL), and type 2 DC (cDC2), which uses MHC class II to promote a response
from CD4+ T cell (helper T cell) [8]. Plasmacytoid DC are a unique subset of DC that
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are specialized in secreting type I interferon (IFN) [9]. Mo-DC are primarily involved in
inflammation and promote TH17 immune response [10] (Figure 1A). Currently, mo-DC is
most used in the field of DC anti-cancer immunotherapy research [11–13]. Although mo-DC
is well-tolerated and safe, low therapeutic efficacy has hindered its widespread use. The
limitation of mo-DC is demonstrated in vitro, where they show a limited ability to migrate
to lymph nodes in order to activate strong cytotoxic T lymphocyte (CTL) responses [14].
In order to overcome the limitations of current modes of DC vaccine, cDC1 was chosen in
this study, as it has the most superior antigen presentation ability and demonstrates high
CTL response. Although studies on cDC1 vaccines are on the rise, cDC1 has not yet been
explored in a clinical trial [15].
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Figure 1. Scheme of vaccination with ex vivo pulsed-DC (against cancer). Dendritic cells play an 
important role in deciding the direction of host immune reactions, CTL induction, and anti-cancer 
effects. CellgramDC-WT1 (CDW), a Th1-inducing type of dendritic cell vaccine, is made as fol-
lows. Hematopoietic stem cells (CD34+ cells) are isolated from the patient’s bone marrow for pro-
liferation and differentiation into DC. Then, the cells are pulsed using WT1 protein and made into 
a DC vaccine using zoledronate as a maturation factor (A). Through different growth factors, such 
as GM-CSF and FLT3-ligand, immature DC differentiate into several types of DC. These differen-
tiated DC secrete various cytokines to regulate the immune response. Specifically, naïve T cell dif-
ferentiation into Th1-type T cells can occur, which directly induces CTL reactions to cause an-
ti-cancer effects (B). 

We obtained mononuclear cells (MNC) from bone marrow and then isolated CD34+ 
cells (hematopoietic stem cells) using the MACS® Cell Separation technique. Cells were 
proliferated using granulocyte–macrophage colony-stimulating factor (GM-CSF), stem 
cell factor (SCF), and Fms-like tyrosine kinase receptor 3 (FLT3)-ligand, which directly 
induces differentiation into DC [16], and differentiation into DC was induced with 
GM-CSF and interleukin 4 (IL-4). Immature DC recognize WT1 protein as the antigen 
and are matured using zoledronate. WT1 (Wilms’ tumor1) antigen is highly expressed in 
various malignancies and a variety of solid tumors. Therefore, WT1 has been used as one 
of the targets of immunotherapy for cancer [17]. Zoledronate is a drug of the bisphos-
phonate class, which is widely used for the treatment of both osteoporosis and skeletal 
metastasis. Additionally, zoledronate inhibits the enzyme farnesyl diphosphate synthase, 
which plays a role in the mevalonate pathway and in the subsequent prenylation of small 
GTPase proteins, such as Ras [18]. The matured DC are then finalized as a DC vaccine 

Figure 1. Scheme of vaccination with ex vivo pulsed-DC (against cancer). Dendritic cells play an
important role in deciding the direction of host immune reactions, CTL induction, and anti-cancer
effects. CellgramDC-WT1 (CDW), a Th1-inducing type of dendritic cell vaccine, is made as follows.
Hematopoietic stem cells (CD34+ cells) are isolated from the patient’s bone marrow for proliferation
and differentiation into DC. Then, the cells are pulsed using WT1 protein and made into a DC vaccine
using zoledronate as a maturation factor (A). Through different growth factors, such as GM-CSF and
FLT3-ligand, immature DC differentiate into several types of DC. These differentiated DC secrete
various cytokines to regulate the immune response. Specifically, naïve T cell differentiation into
Th1-type T cells can occur, which directly induces CTL reactions to cause anti-cancer effects (B).

We obtained mononuclear cells (MNC) from bone marrow and then isolated CD34+
cells (hematopoietic stem cells) using the MACS® Cell Separation technique. Cells were
proliferated using granulocyte–macrophage colony-stimulating factor (GM-CSF), stem
cell factor (SCF), and Fms-like tyrosine kinase receptor 3 (FLT3)-ligand, which directly
induces differentiation into DC [16], and differentiation into DC was induced with GM-CSF
and interleukin 4 (IL-4). Immature DC recognize WT1 protein as the antigen and are
matured using zoledronate. WT1 (Wilms’ tumor1) antigen is highly expressed in various
malignancies and a variety of solid tumors. Therefore, WT1 has been used as one of the
targets of immunotherapy for cancer [17]. Zoledronate is a drug of the bisphosphonate
class, which is widely used for the treatment of both osteoporosis and skeletal metastasis.
Additionally, zoledronate inhibits the enzyme farnesyl diphosphate synthase, which plays
a role in the mevalonate pathway and in the subsequent prenylation of small GTPase
proteins, such as Ras [18]. The matured DC are then finalized as a DC vaccine (Figure 1A).
In general, matured DC secrete various cytokines to induce the activation of immune
cells [19] and bind directly to T cells for antigen presentation [20]. T cells reacted with DC
become helper T cells (CD4+) to help the immune response or cytotoxic T cells (CD8+) to
directly initiate anti-cancer effects [21] (Figure 1B). The composition of the DC vaccine was
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confirmed by flow cytometry, and the function of the vaccine was analyzed via cytokine
secretion test, T cell change, and cytotoxic T Lymphocyte (CTL) assay.

2. Results
2.1. Flow Cytometry Profiles Illustrating DC Vaccine with High CD141+ Expression

To confirm the identity of the DC, various markers were analyzed, including CD141
(most widely used cDC1 marker), CD1c (marker of cDC2), and CD303a (marker of pDC).
In addition, HLA-DR, CD80, and CD86, which are activation markers, were also analyzed.
In contrast to 70% of cDC2 found in human DC of blood, the DC that was produced mostly
consisted of cDC1 (CD141+ cells), and the double positive occurrence of CD141+CD1c+ in
activated DC was also confirmed [22,23]. Furthermore, the results showed a significantly
high level of activity for DC (Figure 2A,B). Cell morphology changes were also tracked
using complete blood count (CBC) for different time points in DC production. While most
of the cells proliferate as monocytes in the proliferation phase (Table 1), the differentiation
phase resulted in a gradual decrease in monocytes to a level of disappearance toward the
end of the production process.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 13 
 

 

(Figure 1A). In general, matured DC secrete various cytokines to induce the activation of 
immune cells [19] and bind directly to T cells for antigen presentation [20]. T cells reacted 
with DC become helper T cells (CD4+) to help the immune response or cytotoxic T cells 
(CD8+) to directly initiate anti-cancer effects [21] (Figure 1B). The composition of the DC 
vaccine was confirmed by flow cytometry, and the function of the vaccine was analyzed 
via cytokine secretion test, T cell change, and cytotoxic T Lymphocyte (CTL) assay. 

2. Results 
2.1. Flow Cytometry Profiles Illustrating DC Vaccine with High CD141+ Expression 

To confirm the identity of the DC, various markers were analyzed, including CD141 
(most widely used cDC1 marker), CD1c (marker of cDC2), and CD303a (marker of pDC). 
In addition, HLA-DR, CD80, and CD86, which are activation markers, were also ana-
lyzed. In contrast to 70% of cDC2 found in human DC of blood, the DC that was pro-
duced mostly consisted of cDC1 (CD141+ cells), and the double positive occurrence of 
CD141+CD1c+ in activated DC was also confirmed [22,23]. Furthermore, the results 
showed a significantly high level of activity for DC (Figure 2A,B). Cell morphology 
changes were also tracked using complete blood count (CBC) for different time points in 
DC production. While most of the cells proliferate as monocytes in the proliferation 
phase (Table 1), the differentiation phase resulted in a gradual decrease in monocytes to a 
level of disappearance toward the end of the production process. 

 

 
(A) (B) 

Figure 2. Identification of CDW subsets. Phenotypic characteristics of DC. During the differentia-
tion process, the DC were pulsed with WT1 protein and treated with 1 μM zoledronate for 3 h. The 
data show the expression of stimulatory marker and subtype of DC representative of human DC (n 
= 5) (A). Results are shown as dot plots (B).  
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changes were analyzed using CBC. 
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4 14.89 44.69 39.36 
7 5.76 69.78 23.02 

11 12.33 71.24 14.38 
14 14.53 76.92 5.13 

Figure 2. Identification of CDW subsets. Phenotypic characteristics of DC. During the differentiation
process, the DC were pulsed with WT1 protein and treated with 1 µM zoledronate for 3 h. The data
show the expression of stimulatory marker and subtype of DC representative of human DC (n = 5)
(A). Results are shown as dot plots (B).

Table 1. During the process of proliferation and differentiation from CD34+ cells to DC, phenotypic
changes were analyzed using CBC.

Days Lymphocyte (%) Monocyte (%) Neutrophils (%)

0 60.17 32.45 7.12
4 14.89 44.69 39.36
7 5.76 69.78 23.02
11 12.33 71.24 14.38
14 14.53 76.92 5.13
18 6.69 91.74 1.18
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2.2. Plasmatic Level of IL-12 and IFN-γ Cytokines Determined by ELISA

Of the many cytokines secreted by DC, the most representative are IL-12 and IFN-γ.
IL-12 regulates inflammation by linking innate and adaptive immune responses. Most
of the IL-12-induced effects are mediated by the secretion of IFN-γ and turned out to be
critical for the induction of Th1 cells. IFN-γ plays a key role in the activation of cellular
immunity and, subsequently, stimulation of antitumor immune response [24–26].

In order to verify the efficacy of CDW, IL-12 and IFN-γ secretion levels were analyzed
via interaction with T cells. While T cell-only and T cell treated with unpulsed DC con-
ditions resulted in secretion levels that were similar to each other, when the groups were
compared with that of the T cell + CDW group, CDW induction on T cells yielded twice
the level of IL-12(Figure 3A) and significantly increased the level of IFN-γ (Figure 3B).
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Figure 3. Induction comparison of CDW on T cells via cytokine analysis. The secretion of
IL-12 (A) and IFN-γ (B) was measured in T cell only (activated IL-2 and Trans ACT), T cell + unpulsed
DC, and T cell + CDW co-culture supernatant using ELISA assay (n = 3). ELISA was performed using
the supernatant at the time of completion. Analysis was performed through SigmaPlot. *** p < 0.001.

2.3. Zoledronate’s Effect on the Differentiation and Maturation of cDC1 in CDW

In the previous study, Rg3 [27], a ginsenoside found in panax ginseng, was used to
induce maturation of DC; however, the final product consisted of a layer of impurities,
causing difficulties in quality control. Zoledronate was used as a substitute for Rg3 to
overcome this problem, and its effect on the induction of DC maturation was analyzed.
The most significant difference between the effects of the two substances is the ability
of zoledronate to yield an exceptionally high expression of cDC1 (CD141+ cell) surface
marker (Figure 4A). Thus, as cDC1 is known to be the most superior DC subtype in antigen
presentation, zoledronate was chosen for the induction of DC maturation [18]. The optimal
treatment time of zoledronate in inducing DC maturation was also assessed. Although 24 h
treatment yielded a sufficient proportion of CD141+ cell, the CD141+ cell proportion in 3 h
treatment result was greater by approximately 20%, and the CD86 (co-stimulatory marker)
proportion in 3 h treatment was also greater by 30%. In addition, taking into consideration
the mechanism of action of zoledronate, a shorter treatment time of 3 h compared to 24 h
was deemed more effective in producing a higher quality of DC (Table 2).



Int. J. Mol. Sci. 2023, 24, 1501 5 of 13

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 13 
 

 

 

 

  

Figure 4. Effect of zoledronate on the differentiation and maturation of cDC1 in DC vaccine pro-
duction. Effects of zoledronate in DC vaccine. In the process of DC vaccine production, 3 hr treat-
ment with zoledronate induces differentiation and maturation of DC to cDC1 and yields a higher 
level of CD141 marker. Phenotype markers were analyzed by flow cytometry to compare Rg3 (n = 
4) and zoledronate (n = 5), which were used for the induction of DC maturation. *** p < 0.001. 

Table 2. Effect of zoledronate treatment times (3 h and 24 h) on surface markers. 

% HLA-DR CD80 CD86 CD141 CD1c 
Zol 24 h (n = 3) 76.27 84.67 36.07 64.77 80.97 
Zol 3 h (n = 3) 82.62 80.54 64.23 84.68 57.94 

2.4. CDW Vaccination-Induced WT1 Antigen-Specific T Cell Responses 
Tests were performed to confirm the efficacy of the DC in activating T cells. T cells 

were isolated from peripheral blood mononuclear cells (PBMC), and T cell stimulators 
IL-2, Trans ACT, and DC were used for the primary induction. After seven days, sec-
ondary induction of DC was performed, and cells were recovered and investigated on 
the 10th day (Figure 5A). As a result, it was concluded that the CDW directly affected T 
cells given the increased number of CTL cells. In addition, a CTL assay was carried out to 
determine whether the CDW-educated T cells that were made also work in the WT1 an-
tigen-expressing solid cancer model. After two induction of T cells with CDW, they were 
co-cultured with one of the following WT1-expressing cell lines: PANC1 (pancreatic 
cancer), MDA-MB-231 (breast cancer), Skov-3 (ovarian cancer), PC3, and Mia-paca2 
(prostate cancer). Furthermore, in order to confirm whether CTL response was due to the 
effect of CDW on T cell activation, experiments using a T cell-only group activated by 
IL-2 and Trans ACT as well as a T cell group activated via unpulsed DC were carried out. 
While both these groups resulted in high killing response when in a 20:1 ratio, they failed 
to give concentration-dependent values in the setting of a 10:1 ratio (Figure 5C,D). In 
contrast, T cells induced by CDW group showed concentration-dependent action (Figure 
5B). 

Figure 4. Effect of zoledronate on the differentiation and maturation of cDC1 in DC vaccine produc-
tion. Effects of zoledronate in DC vaccine. In the process of DC vaccine production, 3 hr treatment
with zoledronate induces differentiation and maturation of DC to cDC1 and yields a higher level of
CD141 marker. Phenotype markers were analyzed by flow cytometry to compare Rg3 (n = 4) and
zoledronate (n = 5), which were used for the induction of DC maturation. *** p < 0.001.

Table 2. Effect of zoledronate treatment times (3 h and 24 h) on surface markers.

% HLA-DR CD80 CD86 CD141 CD1c

Zol 24 h (n = 3) 76.27 84.67 36.07 64.77 80.97
Zol 3 h (n = 3) 82.62 80.54 64.23 84.68 57.94

2.4. CDW Vaccination-Induced WT1 Antigen-Specific T Cell Responses

Tests were performed to confirm the efficacy of the DC in activating T cells. T cells
were isolated from peripheral blood mononuclear cells (PBMC), and T cell stimulators IL-2,
Trans ACT, and DC were used for the primary induction. After seven days, secondary
induction of DC was performed, and cells were recovered and investigated on the 10th
day (Figure 5A). As a result, it was concluded that the CDW directly affected T cells given
the increased number of CTL cells. In addition, a CTL assay was carried out to determine
whether the CDW-educated T cells that were made also work in the WT1 antigen-expressing
solid cancer model. After two induction of T cells with CDW, they were co-cultured with
one of the following WT1-expressing cell lines: PANC1 (pancreatic cancer), MDA-MB-231
(breast cancer), Skov-3 (ovarian cancer), PC3, and Mia-paca2 (prostate cancer). Furthermore,
in order to confirm whether CTL response was due to the effect of CDW on T cell activation,
experiments using a T cell-only group activated by IL-2 and Trans ACT as well as a T cell
group activated via unpulsed DC were carried out. While both these groups resulted in
high killing response when in a 20:1 ratio, they failed to give concentration-dependent
values in the setting of a 10:1 ratio (Figure 5C,D). In contrast, T cells induced by CDW
group showed concentration-dependent action (Figure 5B).
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Figure 5. CDW increases CD8+ T cells to promote cytotoxicity against cancer cells. Effect of CDW
on T cell response assessed via CTL. IL-2 and Trans-Act are T cell stimulators and were used to
stimulate T cells. The activated T cells were co-cultured with DC for the first induction, which lasts
for seven days and the second induction which extends to 10 days. The changes in the T cell subtype
were analyzed via flow cytometry (A). The T cells cultured for 10–14 days were co-cultured with
cancer cells expressing WT1 according to appropriate ratios in a 96-well plate. Post-72 h, the survival
rate of cancer cells was analyzed using CCK8 (B–D). T cells induced by CDW group (B). T cell only
group (activated IL-2 and Trans ACT) (C). T cells induced by unpulsed DC group (D). * p < 0.05,
*** p < 0.001.

2.5. Confirmation of the Safety of CellgramDC Vaccine

In both administration groups (3.4 × 104 cells/animal or 1.7 × 105 cells/animal), no
abnormalities were observed with respect to death or general symptoms as a result of the
administered substance.

During the observation period, no toxicologically significant changes were observed
in the administration groups (3.4 × 104 cells/animal or 1.7 × 105 cells/animal) as a result of
the administered substance. The observations included body weight (Figure 6A), urinalysis
(Figure 6B), feed intake, ophthalmological examination, hematological examination, blood
biochemical examination, organ weight, autopsy, and local tolerance test (Supplement 1,
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Tables S1–S9). Various tests were confirmed by comparing stem-derived DC (CellgramDC)
and monocyte-derived DC (mo-DC). The survival and tumor size of mice were also tested.
The tumor size in the stem-DC group was reduced by more than 50% compared to that of
the mo-DC group, and the survival rate was also increased, confirming a strong anticancer
effect (Supplement 2).
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× 104 cells/animal and 15 mice injected with 1.7 × 105 cells/animal. A negative control group was 
comprised of 15 mice and were injected intravenously with a solution composed of excipient, 
plasma solution-A/human serum albumin (HSA) 90% + DMSO 10% and saline for six weeks (one 

Figure 6. Subcutaneous dose toxicity study of CellgramDC in C57BL/6 mice. To test the safety and
toxic response of the CellgramDC, female and male mice of C57BL/6 strain were subcutaneously
injected with CellgramDC for a total of six weeks (one injection per week). The safety of Cell-
gramDC was tested by subcutaneous injection into female and male mice for a total of six weeks
(one injection per week). Administration groups consisted of two groups: 10 mice injected with
3.4 × 104 cells/animal and 15 mice injected with 1.7 × 105 cells/animal. A negative control group
was comprised of 15 mice and were injected intravenously with a solution composed of excipient,
plasma solution-A/human serum albumin (HSA) 90% + DMSO 10% and saline for six weeks (one
injection per week). In order to test for a reversible toxic response, five mice from each comparison
group, negative control group, and 1.7 × 105 cells/animal administration group, were given two
weeks of the recovery period. During the recovery period, weight check (A), urinalysis (B), general
symptoms, feed intake measurement, and ophthalmological examination were observed. Following
the observation period, hematological tests, blood biochemical tests, and organ weight measurements
were performed, as well as visual and histopathological examinations at necropsy.
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We confirmed the stability and effectiveness of CellgramDC. CDW that is pulsed with
WT1 and treated with zoledronate will also be tested for toxicity and efficacy and improved
results are expected.

3. Discussion

In the CDW vaccine that was produced, cDC1 was the highest in proportion and
showed a high level of activity. The cDC1 are cells with the most superior antigen presenta-
tion ability and are responsible for the main function of DC. Considering how cDC1 makes
up a rare subset of DC [~0.03% of PBMC] [28], the predominance of the CD141+ population
in CDW is a clear advantage in increasing the efficacy of the vaccine. Furthermore, cDC1
in CDW secreted cytokines (IL-12 and IFN-γ) at a high level and was capable of inducing
the differentiation of naïve T cells to active CD8+ T cells. In our previous study, Rg3 was
used as a maturation factor, but given the difficulty in obtaining supply and quality control
of the final product, zoledronate was used as a substitute to overcome these challenges.
DC induced by zoledronate was studied to analyze its role as an inducer of Vγ9 γδ T cell
activation [29]. Zoledronate is a class of bisphosphonates, and bisphosphonates induce the
activity of γδ T cells to rapidly and abundantly produce proinflammatory cytokines [30],
and taking this into consideration, we designed our experiment to test the effects of short-
term treatment. In our study, zoledronate (compared to Rg3) induced activation of CD8+ T
cells in CDW and also increased the cDC1 level. The first clinical trial was conducted for
DC induced by Rg3 (NCT 046158-45) from our previous study, but results have not been
reported. However, we expect improved results in future clinical trials using DC induced
by zoledronate given the current findings.

Recently, there are many studies surrounding immunotherapy against cancer, and the
most researched therapies are CAR-T [31,32] and CAR-NK [33,34]. These therapies have
confirmed their efficacy and are highly anticipated for the treatment of cancer. However,
CAR-T is limited to the treatment of blood cancer, which comprises a very small proportion
of all cancer types [35]. Furthermore, patients may suffer from side effects of the treatment,
such as cytokine release syndrome (CRS) [36]. In order to overcome these shortcomings,
immune therapy using NK cells is being researched. NK cells are highly potent lymphocytes
and target cancer through multiple broadly expressed activating ligands. As a result, NK
cells may address the limitations of autologous CAR T cell therapy. However, there are
several potential drawbacks to the usage of NK cells, such as difficulty in cell culture,
immediacy in the peak activity of cellular kinetics, and shorter intrinsic longevity as well as
limited memory phenotype in the life span and response [34,37,38]. Other research involves
combinational therapies using DC or T cells and immune checkpoint inhibitors such as anti-
PD1 (programmed cell death protein1) [39] or anti-PD-L1 (programmed death-ligand1) [40].
The co-administration of these drugs allows the targeting of the immunosuppressive
tumor microenvironment and further research is in progress to increase the efficacy of
these therapies.

The research for the development of DC vaccine for immunotherapy is continually
increasing, and many advancements are being made in this field. DC plays a central and
critical role in the advanced immune system, and the DC vaccine may offer an advantage
compared to other modes of immunotherapy for cancer. Because DC does not directly kill
cancer cells, normal cells are unaffected, eliminating adverse side effects. Furthermore,
by pulsing DC with WT1, an antigen commonly expressed in many solid tumors [17], the
DC vaccine can target solid tumor models. Before deciding on the WT1 protein antigen,
we experimented with various types of antigens. By using quality guaranteed products,
as well as various antigens such as a peptide, peptivator, or pepmix, the antigen with the
greatest effect was when used as a protein. Consequently, we used WT1 protein for antigen
pulsing. The most widely studied approach in DC therapy uses mo-DC pulsed with WT1
in conjunction with chemotherapy [12]. The safety and immunogenicity of mo-DC has
been confirmed through clinical trials [13]. While other DC vaccine research develops
its vaccines using monocyte-derived DC from blood, we predicted that DC derived from
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stem cells will have increased potential. Additionally, it is known that cDC has greater
power than mo-DC, propelling us toward this research. Therefore, CDW may be a better
alternative to mo-DC, as its primary component is cDC1, a DC subtype with the most
effective cross-presentation ability. Although the cytotoxic activity was similar in the T
cells+unpulsed DC group and CDW group, we hypothesize this is because unpulsed DC
is also a type of cDC1 cell. Regardless, CDW may effectively elicit a strong anti-tumor
immune response by increasing the cDC1 population. Through the preclinical study, we
tested repeated dose toxicity of the DC vaccine. The development and production process
of CDW have been verified, and we hope to conduct further studies to test the improved
effects of CDW. While efficacy was confirmed in vitro, a dose toxicity study was performed
for efficacy validation in vivo.

Once the results of clinical trials using CDW are reported, we intend to guide our
research in the direction that will improve current research.

4. Materials and Methods
4.1. Cell Culture

DC culture is examined. Human bone marrow-derived mononuclear cells (MNC)
were obtained from Lonza (2M-125C). Hematopoietic stem cells were isolated from MNC
by magnetic separation, using the CD34 microbead kit Ultrapure human (Miltenyibiotec,
Bergisch Gladbach, Germany 130-100-453). GM-CSF (PeproTech, Cranbury, NJ, USA,
AF-300-03-1000), SCF (PeproTech, AF-300-07-1000), and FLT-3ligand (PeproTech, AF-300-
19-1000) were used for proliferation, lasting about 14 days. Thereafter, GM-CSF and IL-4
(PeproTech, AF-200-04-1000) were used to differentiate cells into DC for one week. At the
end of the differentiation process, DC was pulsed with WT1 protein for antigen recognition
and maturation was induced with zoledronate. After maturation, CDW is complete.

T cell culture is examined. Human peripheral blood mononuclear cells (PBMC) were
obtained from Lonza (CC-2702). Naïve T cells were isolated from PBMC by magnetic
separation using the Pan T cell isolation kit human (Miltenyibiotec, 130-096-535). IL-2
(PeproTech, 200-02) was used for proliferation, lasting about 10~14 days. TransAct (Mil-
tenyibiotec, 130-111-160) and CDW were used for activation on the first and seventh days
of culture.

These cells were routinely grown in HyClone RPMI 1640 media (Sigma-Aldrich,
Burlington, MA, USA, SH30255.01) supplemented with 10% Fetal bovine serum (Gibco,
Carlsbad, CA, USA, 10099-141) and 1% Gentamicin (Gibco, 15710-064) at 37 ◦C in a humidi-
fied atmosphere containing 5% CO2.

4.2. CTL Assay

The Cell Counting Kit-8 (CCK-8, Dojindo Laboratories, Kumamoto, Japan) was used
to measure the cytotoxicity of T cells in cancer cells. The cancer cells (1 × 104 cells/well)
were cultured with T cells (1 × 104 cells/well, 1 × 105 cells/well, 2 × 105 cells/well) and
induced twice with CDW for 72 h in 96-well plates at 37 ◦C in a 5% CO2 incubator. After
10 µL CCK-8 solution was added to each well, the plate was re-incubated for 3 h at 37 ◦C,
and the absorbance at 450 nm was detected using a microplate reader (Epoch™ Microplate
Spectrophotometer, BioTek U.S, Winooski, VT, USA). Data were analyzed using SigmaPlot
(Systat, version 8.02a) software.

Cancer cells used were: PANC1 (CRL1469), MDA-MB-231 (HTB-26), Skov-3 (HTB-77),
PC3 (CRL-1435), and Mia-paca2 (CRL1420). All cancer cells were purchased from ATCC.

4.3. Phenotypic Analysis

Flow cytometry was used to analyze the DC and T cell phenotype. For analysis, DC was
stained with CD80 (AF700, BD, 56113), CD86 (PE, 12-0869-42), HLA-DR (PE, 12-9956-42),
CD1c (PC5.5, 46-0015-42), CD141 (APC, 17-1419-42), and CD303a (FITC, 11-9818-42). T
cells were stained with Fixable viability dye (AF750, 65-0865-18), CD3 (PE, 12-0038-42),
CD4 (FITC, 11-0049-42), CD8a (PerCP-eFF710, 46-0087-42) and CD45RO (APC, 17-0457-42).
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Data were acquired on a Cytoflex cytometer (Beckman Brea, CA, USA) and analyzed using
FlowJo (Treestar, version 10.8.1) software. Cell morphology changes were tracked using
a complete blood count (CBC) (Beckman). All antibodies except CD80 were purchased
from Invitrogen.

4.4. ELISA Assay of Cytokine Secretion

The concentration of cytokines was measured using commercial Quantikine ELISA
Kits (R&D systems, Bio-Techne) to detect IFN-γ (DIF50C) and IL-12p70 (D1200), which
are secreted in T cell and T cell + CDW co-culture supernatant, and the absorbance at
450 nm was detected using a microplate reader (Epoch™ Microplate Spectrophotometer,
BioTek U.S).

4.5. Animals

Pathogen-free female C57BL/6 mice at 6 weeks old were purchased from Orient Bio
(Seongnam, South Korea). The test was performed at Biotoxtech Co.Ltd (Ochang-eup,
Cheongju-si, Chungcheongbuk-do, 28115, South Korea). C57BL/6 mice were used in
1-week intervals for a total of 6 times. Cells were administered subcutaneously near the
draining lymph node. The amounts were low dose (normal dose × 10), middle dose
(normal dose × 50), and high dose (normal dose × 100). Each of these dosage amounts are
as follows: low dose (3 × 105), middle dose (1.5 × 106), and high dose (3 × 106).

Normal dose = 1 × 107/60 kg vs. mouse 20 g.
Mice were housed at a pathogen-free animal care facility and kept on diurnal cycles

of 12 h light and 12 h dark with ad libitum access to food and water. Animal care was
performed following the OECD Principles of Good Laboratory Practice guideline. Mice
were acclimated for at least one week before any experiments were conducted.

Ethics committee name: Association for Assessment and Accreditation of Laboratory
Animal Care International (AAALAC).

Approval Code: 180159. Approval Date: 2018.03.06.

4.6. Statistical Analysis

Comparisons of samples for the establishment of statistical significance were deter-
mined by two-tailed student’s t-test. Results were considered statistically significant when
* p < 0.05, ** p < 0.01 and *** p < 0.001

4.7. Reagents

Ginsenoside Rg3 was supplied by Dr. Sung Ho Son (VitroSys Inc., Yeongju, Republic
of Korea).

Zoledronate (zoledronic acid), kindly provided by Novartis Pharma AG, was added
on the last day of culture to evaluate its immuno-modulatory effects on DC. The drug
concentration was selected on the basis of a series of tests performed that determined the
ideal concentration of zoledronate to be 1 µmol/L.

Human Wilms’ tumor gene 1 (WT1) protein was synthesized at JW CreaGene (Seong-
nam, Republic of Korea). The purity of the protein was confirmed to be >95% by sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). Synthetic protein was
dissolved in dimethyl sulfoxide (DMSO) according to the manufacturer’s recommendations
and stored at −70 ◦C until use.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24021501/s1.
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DC dendritic cells
CDW CellgramDC-WT1
PBMC peripheral blood mononuclear cells
CTL cytotoxic T lymphocyte
WT1 Wilms’ tumor1
cDC classical/conventional DC
pDC plasmacytoid DC
Mo-DC monocyte-derived DC
APC antigen-presenting cells
MHC major histocompatibility complex
IFN interferon
GM-CSF granulocyte-macrophage colony-stimulating factor
SCF stem cell factor
FLT3-ligand Fms-like tyrosine kinase receptor 3
CCK8 cell counting Kit-8
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