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Abstract
Cell–cell interaction (CCI) is a crucial event in the development and function of multicellular organisms. The development of CCI 
databases is beneficial for researchers who want to analyze single-cell sequencing data or study CCI through molecular experiments. 
CCIs are known to act differently according to cellular and biological contexts such as cell types, gene mutations or disease status; 
however, previous CCI databases do not completely provide this contextual information pertaining to CCIs. We constructed a cell-
cell interaction database (CCIDB) containing the biological and clinical contexts involved in each interaction. To build a database of 
cellular and tissue contexts, we collected 38 types of context features, which were categorized into seven categories, including ‘inter-
action’, ‘cell type’, ‘cofactor’, ‘effector’, ‘phenotype’, ‘pathology’ and ‘reference’. CCIs were manually retrieved from 272 studies published 
recently (less than 6 years ago). In the current version of CCIDB, 520 CCIs and their 38 context features have been manually collected and 
curated by biodata engineers. We suggest that CCIDB is a manually curated CCI resource that is highly useful, especially for analyzing 
context-dependent alterations in CCIs.

Database URL: https://ccidb.sysmed.kr/

Introduction
Biosystems are composed of numerous cells, and the interac-
tions between these cells lead to an exchange of important 
biological signals that play an important role in maintaining 
biological functions. To date, various types of cell–cell inter-
actions (CCIs), including ligand–receptor interaction, extra-
cellular matrix (ECM)–receptor and receptor–receptor inter-
actions, have been identified. Recent advances in single-cell 
RNA sequencing (scRNA-seq) technology have enabled us to 
distinguish between cell types and estimate their transcription. 
Single-cell-level profiling can reveal CCIs at the single-cell 
level (1). Previously, several databases for CCI, such as Bader-
LabDB (2), LRdb (3), CellPhoneDB (4) and CellChatDB (5), 
have been developed using either the interactions reported in 
the literature or computationally predicted interactions. For 
example, BaderLabDB (2) contains 115 900 ligand–receptor 
(LR) interactions found in humans. LRdb (3) contains 3251 
human LR interactions. CellPhoneDB (4) contains 930 human 
LR interactions. CellChatDB (5) contains 3960 interactions 
documented in humans and mice. These databases contain 
useful information about CCIs such as the source gene, tar-
get gene, interaction name, reference features, including ‘db 

resource’, ‘db source’ and ‘PubMed ID (PMID)’ and infor-
mation about the cell type, including ‘species’. These CCI 
databases are being actively used as a resource by researchers 
to understand and study the mechanisms underlying cellular 
phenomena and physiological functions regulated by interac-
tions between cells. Moreover, dysregulated CCIs can lead to 
the development and progression of diseases; therefore, under-
standing CCIs can help researchers in gaining deep insights 
into the pathobiology of diseases.

CCIs are differentially regulated based on cell types and 
cellular conditions such as gene mutations, disease status 
and other genetic perturbations. These cellular contexts affect 
CCIs, regulating their downstream cellular effects such as 
those on cell growth, death, differentiation and disease devel-
opment and progression (6). Nevertheless, previous CCI 
databases have not incorporated well-established CCIs that 
act differentially depending on the cellular context. Indeed, 
malignant cells interact with fibroblasts, immune cells and 
other tissue cells; however, their interactions can be differ-
entially regulated depending on the cellular context, such 
as mutations, gene expression levels or grades of disease 
progression. For example, tumor cells with TP53 mutated 
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that interact with fibroblasts contribute to tumor progression 
by mediating angiogenesis (7). Moreover, fibroblasts in can-
cer tissues, which show different cellular characteristics, are 
called cancer-associated fibroblasts (CAF). CAFs secrete IL-6, 
interact with IL-6R and facilitate cancer cell progression (8). 
These findings reveal that even with the same cell type, CCI 
may differ depending on the disease status and cellular con-
text. Therefore, we suggest that the cellular context should be 
considered for CCI analysis.

In this study, we developed a cell-cell interaction database 
(CCIDB), containing the cellular contexts that are important 
for cell functions such as cell type, pathology and pheno-
types. We manually retrieved and curated the information 
pertaining to context-dependent CCIs from recently published 
literature and compared it with previous CCI databases. We 
demonstrated that our database is beneficial for biological 
interpretation as well as for understanding context-dependent 
underlying mechanisms.

Results
Construction of CCIDB with context information
We gathered 272 literature studies on CCIs from biomedical 
journals with an impact factor higher than 5 and published 
within the past 6 years; we then manually retrieved 520 
CCIs and related information. The interactions were reviewed 
and manually curated by biodata engineers with bachelor’s 
degrees in biology-related subjects.

To construct a CCI database containing cellular context-
related information, we collected 38 features for the cell 
context from the literature. We categorized the context fea-
tures into seven categories, including ‘interaction’, ‘cell type’, 
‘cofactor’, ‘effector’, ‘phenotype’, ‘pathology’ and ‘reference’. 
The complete list of features is presented in Table 1. The 
‘interaction’ category included the interaction features such as 
‘interaction type’, ‘interaction name’ and ‘signaling type’. The 
‘interaction’ feature had the names of genes involved in the 
CCI, i.e. ‘source gene’ and ‘target gene’, which we used as the 
official gene symbols for humans (HUGO) (9) and mice (MGI) 
(10). In cases where an official gene symbol was not available, 
we adopted the terminology used in the corresponding liter-
ature to refer (i.e. Acetylcholine, Lipid and Polyunsaturated 
fatty acid). The ‘interaction type’ included ‘Ligand–receptor’, 
‘ECM–receptor’ and ‘Receptor–receptor’. The ‘interaction 
name’ described the paired source-target genes, and the ‘sig-
naling type’ described paracrine, autocrine and juxtracrine 
signaling. The ‘cell type’ category included the features such 
as ‘source cell’, ‘species’ and ‘target cell’. The nomenclatures 
from the human protein atlas (11) were used as cell type 
names. The ‘cofactor’ category included ‘source gene cofactor’ 
describing the agonist or antagonist cofactor type. The ‘source 
gene cofactor function’ and ‘target gene cofactor function’ 
features described the cofactor functions for the source gene 
and target gene, respectively. The ‘effector’ category included 
features, such as ‘effector’, ‘pathway name’ and ‘effector’s 
function’, describing the downstream effector genes or path-
ways and their functions. The ‘phenotype’ category contained 
‘mode of action’ and ‘phenotype’ features. The ‘mode of 
action’ described the functions of the target cells, including 
activation or inhibition. The ‘phenotype’ feature described 
several representative cellular phenotypes, such as metasta-
sis, proliferation, angiogenesis, invasion and progression. The 
‘pathology’ category described the pathological information 

of the source and target cells, including the features of ‘tis-
sue’, ‘cell pathology’, ‘cell perturbation’, ‘cell stage’ and 
‘patient’s pathology’. The cancer-associated cells, including 
CAFs, tumor-associated macrophages, tumor endothelial cells 
and tumor-associated neutrophils, were separately described 
in the ‘cancer-associated’ feature. The ‘cell perturbation’ fea-
ture described experimentally perturbed conditions, including 
knockdown or overexpression, treatment with reagents and 
experimental conditions (e.g. hypoxia). The ‘cell stage’ feature 
described the cell stage such as T cell transition to express CD4 
or CD8, or transition of macrophage into M1 or M2. The 
‘reference’ category described the information about the refer-
ence literature, including ‘DB resource’, ‘DB source’, ‘PMID’, 
‘journal title’, ‘journal name’, ‘first author’ and ‘publication
year’.

In CCIDB, we manually collected 520 CCIs and their 
38 cell context features from 272 studies. Interactions were 
obtained from different species including humans (n = 123), 
mice (n = 95) and combined (n = 300) (Figure 1a). Although 
we tried to select literature in an unbiased manner, many 
studies included research data on cancers (87.31%, n = 454), 
including breast cancer (n = 108), liver cancer (n = 50), pan-
creatic cancer (n = 50) and others (n = 246) (Figure 1b, c). The 
interaction types included 510 Ligand–receptor, 1 Receptor–
receptor and 9 ECM–receptor interactions (Figure 1d, left). 
Signaling types of LR interactions included 372 paracrine, 113 
autocrine and 25 juxtacrine (Figure 1d, right).

When we examined the network structure of the cell-
to-cell interactions, malignant cells had the highest number 
of interactions between the source cell (n = 183, Figure 1e, 
left) and target cell (n = 247, Figure 1e, right). In cell-
to-cell interaction, malignant cells exhibited the highest 
frequency of autocrine signaling (n = 75, 21.87%), which 
is a type of signaling where cells produce and respond 
to their own signaling molecules. Interactions with CAFs 
(n = 61, 17.78%) and TAMs (n = 49, 14.29%) were also 
observed frequently in CCIDB (Supplementary Figure S1). 
In gene-to-gene interactions, CCIDB included 201 source 
genes and 199 target genes. Indeed, IL6 (Interleukin-6) 
showed the highest number of interactions among the source 
genes (n = 36, Figure 1f, left), whereas IL6R (Interleukin-6 
receptor) showed the highest number of interactions among 
the target genes (n = 28, Figure 1f, right). These results 
imply the functional significance of IL6 and IL6R in the
overall CCIs.

Comparison of CCIDB with previous CCI databases
We compared the context features of CCIDB with those of 
previous databases, including CellChatDB (5), LRDB (3), 
CellPhoneDB (4) and BaderLabDB (2) (see Table 1). These 
databases had the following features in common: ‘source 
gene’, ‘target gene’, ‘interaction name’, ‘species’, ‘DB resource’, 
‘DB source’ and ‘PMID’. In addition to these, our CCIDB 
had the context features such as ‘cell type’, ‘cofactor’, ‘effec-
tor’, ‘phenotype’ and ‘pathology’, which were considered 
as contexts that significantly affect CCIs, which were not 
included in the previous CCI databases. In addition, CCIDB 
contains the results from latest research carried out using 
the latest single-cell technology within the past 6 years from 
2016 to 2021 (Table 2); therefore, we suggest that the 
CCIDB has the advantage of being up-to-date over the other 
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Table 1. Comparison of context features included in CCIDB and other CCI databases.

Category Context feature CCIDB CellChatDB LRDB CellPhoneDB BaderlabDB

Interaction Source gene O O O O O
Source gene alias O O
Target gene O O O O O
Target gene alias O O
Interaction name O O O O O
Interaction type ECM–receptor

Ligand–receptor
Receptor–receptor

Cell–Cell contact
ECM–Receptor
Secreted signaling

Ligand–receptor Ligand–receptor

Signaling type Autocrine
Paracrine
Juxtacrine

Cell type Source cell O
Literature source cell O
Target cell O
Literature target cell O
Species Human

Mouse
Bovine
Chicken

Human
Mouse

Human Human Human

Cofactor Source gene cofactor O O
Source gene cofactor 

function
O O

Target gene cofactor O O
Target gene cofactor 

function
O O

Effector Effector O
Effector’s function O
Pathway name O O

Phenotype Phenotype O
Mode of action O

Pathology Source tissue O
Target tissue O
Source cell pathology O
Target cell pathology O
Source cell perturbation O
Target cell perturbation O
Source cell stage O
Target cell stage O
Patient’s pathology O
Literature patient’s 

pathology
O

Reference DB resource CCIDB CellChatDB LRDB CellPhoneDB BaderlabDB
DB source PubMed PubMed

PMC
KEGG

PubMed PubMed
PMC

PubMed

PMID O O O O
Journal title O
Journal name O
First author O
Publication year O

Total 38 13 10 8 7

databases. Indeed, 213 of 520 CCIs (38.65%) are present in 
our database, but not in previous databases (Supplementary 
Table S1). For instance, recent studies have shown that CD24 
promotes immune evasion by interacting with Siglec-10 in 
tumors (12), and FGL1-LAG-3 interaction mediates T cell 
suppression in various cancers (13). These crucial interac-
tions were not previously considered in CCI analysis but are 
included in CCIDB.

Intracellular communication network analysis 
using CCIDB in breast cancer
Next, to assess the utility of our CCIDB, we performed 
CCI analysis using scRNA-seq data of breast cancer patients 
(14). After integrating CCIDB and CellChatDB into a refer-
ence database, we identified 1610 cell-to-cell interactions and 
289 unique significant interaction pairs across 9 major cell 
types (Figure 2a–b and Methods). Indeed, 49 interaction pairs 
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Figure 1. Distribution of CCIDB. (a–d) Pie plots showing the distribution of the features in CCIDB, including species (a), disease type (b), cancer type (c), 
interaction type (d, left ) and signaling type of the LR interactions (d, right ). (e–f) Bar plots showing the top-ranked 10 frequent source cell types (e, left ), 
target cell types (e, right ), source genes (f, left ) and target genes (f, right ).

(17.44%, 36 of 281) were detected in CCIDB, while 253 inter-
action pairs (13.04%, 253 of 1939) were in CellChatDB with 
13 overlapped pairs (Figure 2c). When we focused on the top-
ranked interaction pairs, we found seven source-target gene 
pairs from CCIDB (i.e. FGL2_FCGR3A, TINAGL1_ITGB1, 
MDK_LRP1, THY1_ITGB2, CCL5-CD44, SRGN_CD44 

and CXCL12_CXCR4) that showed intracellular communica-
tion across various cell types, including T cells, myeloid cells, 
endothelial cells and cancer epithelial cells (Figure 2d). These 
results suggest that CCIDB contains CCIs that are relevant 
in intracellular contexts and were not previously included in 
other databases. 
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Table 2. Frequency of publication years of literatures in CCIDB and other 
CCI databases.

 Publication year

Database Number of literatures ∼2015 2016 ∼ 2021

CCIDB 272 0% 100%
CellChatDB 176 26.1% 73.9%
LRDB 2508 99.6% 0.4%
CellPhoneDB 103 91.3% 8.7%
BaderLabDB 105 751 93.4% 6.6%

Network analysis using CCIDB reveals 
context-dependent CCI regulators
Next, we performed a context-based network analysis to 
assess whether context-dependent CCIDB information has 
a substantial advantage in analyzing the biological signifi-
cance. We constructed a context-dependent network for liver 
cancer by restricting the context features (i.e. source/target tis-
sues = ‘liver’, patient’s pathology = ‘liver cancer’) (Figure 3a) 
that provides the informational CCIs according to the cell type 
or pathology of source and target cells.

Figure 2. Intracellular communication network analysis using CCIDB in breast cancer. (a) Cell types of the 100,064 cells of breast cancer patients are 
indicated in a UMAP plot. (b) The inferred intracellular communication network across cell types. Circle size is proportional to the number of cells in each 
cell group and edge width represents the communication probability. (c) A Venn diagram shows the distribution of interaction pairs identified from 
CCIDB and CellChatDB. (d) A circle plot shows the interactions of top ranked source-target gene pairs across cell groups. The circle color and size 
represent the calculated communication probability and P -values, respectively. The red asterisks indicate the pairs found in CCIDB.
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Figure 3. Construction of CCI network. (a) The liver cancer network (LCN) was constructed with six context features, namely ‘source tissue’, ‘source cell 
type’, ‘source gene’, ‘target gene’, ‘target cell type’ and ‘target tissue’ using Cytoscape. (b) The LCN (left ) and BCN (right ) constructed by integrating 
CCIDB and previous four CCI databases are shown. The source databases of CCIDB (blue) and others (cyan) are indicated in different colors, and hub 
pair genes are indicated (red ).

In addition, we merged the CCIDB network with previous 
DBs (2–5) to improve the limit of the number of interactions. 
When comparing the CCI networks of liver cancer network 
(LCN) with the context ‘liver cancer’ and breast cancer net-
work (BCN) with the context ‘breast cancer’, we observed 
the differential network configurations depending on the con-
text. From the network, we determined a ligand–receptor pair 
comprising the hub genes (number of interactions >10). In 
the LCN, we found that IFNG-IFNGR1 pair had the largest 
sum of interactions (IFNG interactions = 173, IFNGR1 inter-
actions = 97, total number of interactions = 270). Hence, 
we suggest that the IFNG-IFNGR1 interaction plays a reg-
ulatory role in the LCN (15) (Figure 2a, left). In BCN, 
EGF-EGFR pair was identified as the key regulator (EGF
interactions = 152, EGFR interactions = 358, total number of 
interactions = 510), which has been known to be associated 

with poor prognosis in breast cancer (16). (Figure 2a, right). 
Taken together, we suggest that our CCIDB is useful for ana-
lyzing context-dependent interactions, which may facilitate 
the identification of new underlying mechanisms of CCI in 
disease development and progression.

Discussion
In this study, we constructed a CCIDB, which includes 38 
cellular context features. CCIDB has the most up-to-date 
information manually retrieved from the literature over the 
past 6 years (2016–2021), which would be very useful even 
though the number of interactions is still limited.

The context features included in CCIDB provide detailed 
cellular information, such as the source and target cell types 
(e.g. ‘malignant cell’, ‘CAF’ and ‘TAM’) for each interaction, 
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effector genes, their functions (e.g. ‘activation’, ‘inhibition’) 
and phenotypes (e.g. ‘migration’, ‘invasion’ and ‘angiogen-
esis’) resulting from the CCI. Additionally, the detailed 
pathology (e.g. ‘malignant’, ‘cancer-associated’, ‘normal’) 
and perturbation (e.g. ‘hypoxia’) of the source and target 
tissues in which the interaction occurs are captured. By 
utilizing these features, we can construct context feature-
based networks to decipher cell–cell communications within 
specific disease types or among various disease types (see
Figure 3).

Previous CCI databases such as LRDB and BaderlabDB 
were constructed based on literature data mining and did not 
include information on context features for their interactions. 
Even the manually curated CellChatDB and CellPhoneDB 
also did not provide detailed information on cellular phenom-
ena in the interactions. Whereas CCIDB contains data man-
ually curated by biodata engineers with a bachelor’s degree 
or higher, ensuring more accurate information than predicted 
data extracted through literature data mining. In fact, we tried 
to improve the accuracy of the data through a curation process 
that independently verified the CCI information thrice. Thus, 
CCIDB provides informative insights into the detailed path-
ways and effects of intercellular interactions, as well as cellular 
traits and changes in cellular states. However, to develop a 
large-scale database in the future, it may also be necessary to 
obtain additional data using an automated literature mining 
tool trained with these data.

In conclusion, we suggest that utilizing the contextual 
information of the CCIDB can help in meaningful data 
interpretation.

Methods
scRNA-seq data analysis
To perform our CCI analysis, we obtained a scRNA-seq 
dataset of breast cancer patients from the Gene Expres-
sion Omnibus (GSE176078). Cells with mitochondria genes 
expression >20% were excluded. The total number of tran-
scripts in each cell was scaled to 10 000, followed by log trans-
formation. Then, we used Seurat (v4) to detect highly variable 
genes, perform PCA, graph-based clustering and UMAP. For 
the analysis, we merged CCIDB and CellChatDB to create 
an integrated reference database of CCIs. Using CellChat 
(v1.6.1) (5), we inferred the intercellular communication net-
works and identified significant interaction pairs based on a 
cutoff of P < 0.01.

Network analysis
To construct a context-dependent network for liver cancer, 
we used the context features of tissues, cell types and genes 
(i.e. ‘source tissue’, ‘source cell’, ‘source gene’, ‘target tis-
sue’, ‘target cell’, ‘target gene’). After filtering the CCIs for 
liver cancer (source and target tissue = ‘liver’, patient’s pathol-
ogy = ‘liver cancer’), we constructed a multilayer network 
according to the context features of source and target genes 
using by Cytoscape (version 3.9.1). We further expanded the 
CCIDB networks by merging previous DBs (2–5) and deter-
mined a ligand–receptor pair comprising the hub genes (num-
ber of interactions >10) for liver cancer and breast cancer, 
respectively.

Supplementary material
Supplementary material is available at Database online.
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