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Abstract

Cytoplasmic IkB proteins are primary regulators that interact with NF-kB subunits in the cytoplasm of unstimulated cells.
Upon stimulation, these IkB proteins are rapidly degraded, thus allowing NF-kB to translocate into the nucleus and activate
the transcription of genes encoding various immune mediators. Subsequent to translocation, nuclear IkB proteins play an
important role in the regulation of NF-kB transcriptional activity by acting either as activators or inhibitors. To date,
molecular basis for the binding of IkBa, IkBb and IkBf along with their partners is known; however, the activation and
inhibition mechanism of the remaining IkB (IkBNS, IkBe and Bcl-3) proteins remains elusive. Moreover, even though IkB
proteins are structurally similar, it is difficult to determine the exact specificities of IkB proteins towards their respective
binding partners. The three-dimensional structures of IkBNS, IkBf and IkBe were modeled. Subsequently, we used an
explicit solvent method to perform detailed molecular dynamic simulations of these proteins along with their known crystal
structures (IkBa, IkBb and Bcl-3) in order to investigate the flexibility of the ankyrin repeat domains (ARDs). Furthermore, the
refined models of IkBNS, IkBe and Bcl-3 were used for multiple protein-protein docking studies for the identification of
IkBNS-p50/p50, IkBe-p50/p65 and Bcl-3-p50/p50 complexes in order to study the structural basis of their activation and
inhibition. The docking experiments revealed that IkBe masked the nuclear localization signal (NLS) of the p50/p65 subunits,
thereby preventing its translocation into the nucleus. For the Bcl-3- and IkBNS-p50/p50 complexes, the results show that
Bcl-3 mediated transcription through its transactivation domain (TAD) while IkBNS inhibited transcription due to its lack of a
TAD, which is consistent with biochemical studies. Additionally, the numbers of identified flexible residues were equal in
number among all IkB proteins, although they were not conserved. This could be the primary reason for their binding
partner specificities.
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Introduction

NF-kB consists of a family of transcription factors that play central

roles in inflammation, immune response, cell proliferation, differenti-

ation and survival [1]. The five members of the mammalian NF-kB

transcription factor family are p65 (RelA), RelB, c-Rel, p105/p50 (NF-

kB1) and p100/p52 (NF-kB2), which associate with each other to form

various transcriptionally active homo- and hetero-dimeric complexes.

Each member shares a highly conserved 300 amino acid Rel homology

domain (RHD), which mediates DNA binding, dimerization, nuclear

localization and association with one of the members of the IkB

(inhibitors of NF-kB) protein family. The p65, RelB and c-Rel subunits

are positively regulated through transcriptional activation domains

(TADs) at their C-terminal ends. Conversely, TADs are absent in p50

and p52; hence, NF-kB is capable of functioning in three different

possible ways: by altering kB-site specificity as part of a heterodimer

with TAD-containing family members; by repressing transcription as

part of a homodimer when bound to kB sites; or by promoting

transcription through recruitment of other TAD-containing proteins to

kB sites [2]. The IkB protein family is comprised of three functional

groups: (a) typical/cytoplasmic IkB proteins, namely IkBa, IkBb and

IkBe, which are present in the cytoplasm of unstimulated cells and

undergo stimulus-induced degradation; (b) precursor proteins, p100

and p105, which can be processed to form the NF-kB family members

p52 and p50, respectively; and (c) atypical/nuclear IkB proteins,

namely IkBf, Bcl-3 and IkBNS, which are not generally expressed in

unstimulated cells but are induced upon activation to mediate their

effects in the nucleus [3]. Their classification as ‘‘nuclear IkB’’ is due to

the presence of ANK repeats and their localization within the nucleus

when expressed in cells [4].

In most resting cells, NF-kB dimers associate with one of the

typical IkB proteins such as IkBa, IkBb and IkBe. These IkB

proteins mask the NLS of NF-kB, thereby preventing its

translocation into the nucleus. The activation of cells with

appropriate stimuli, particularly Toll-like receptor (TLR) ligands

or various host immune mediators such as proinflammatory

cytokines, including tumor necrosis factor (TNF)-a and interleukin

(IL)-1 superfamily proteins, leads to the phosphorylation of

cytosolic IkBa and rapid ubiquitin-proteasomal degradation,

resulting in the release of NF-kB dimers. These liberated dimers
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then translocate into the nucleus and bind to the promoter/

enhancer regions of target genes, resulting in the regulation of

transcription via recruitment of co-activators and co-repressors.

The activation of transcription leads to the expression of primary/

early response genes, which include three atypical members, IkBf,
Bcl-3 and IkBNS, that play vital roles in the regulation of the

transcriptional activity of secondary response genes by acting as

either activators or inhibitors in the nucleus [5].

All IkB proteins are characterized by the presence of six to

seven ankyrin repeat [6] motifs, which mediate interaction with

the RHD of NF-kB dimers. The ANK repeat is roughly composed

of a 33-amino acid consensus sequence that appears in multiple

copies of numerous proteins [7]. These motifs are known to play

an important role in protein-protein interactions while lacking any

enzymatic activity [8]. These types of structural motifs are

involved in various biological functions such as transcriptional

regulation, cytoskeletal organization, cell cycle, cell development

and differentiation [9,10]. In addition to the ANK repeat motif,

cytoplasmic and nuclear IkB proteins differ at their N- and C-

terminal regions. The amino terminal region of cytoplasmic IkB

consists of conserved Ser and Lys residues that undergo

phosphorylation and subsequent rapid ubiquitin-proteasomal

degradation. Moreover, the carboxyl terminal of cytoplasmic

ARD is rich in proline, glutamic acid, serine and threonine (PEST)

residues, and this acidic PEST motif has been shown to be

indispensable for interactions with NF-kB dimer and its subse-

quent removal from DNA [11,12,13]. Unlike cytoplasmic IkB,

nuclear IkB proteins lack both amino-terminal signal-dependent

phosphorylation sites and carboxyl terminal PEST regions.

Generally, individual IkB proteins are thought to preferentially

associate with a particular subset of NF-kB dimers, although there

is little experimental evidence. Cytoplasmic IkBa, IkBb and IkBe
associate with p50/p65, p65/p65 and c-Rel/p65 or p50/p65

dimers, respectively [13,14,15,16,17]. On the other hand, nuclear

Bcl-3 and IkBNS preferentially associate with p50 and p52

homodimers [18,19,20]. Among these IkB proteins, nuclear IkBf
has been shown to associate with NF-kB proteins (p50/p50, p50/

p65) as well as with other nuclear proteins such as STAT3, p50/

p65-CEBP, Brg1 and CEBP1 [21,22,23,24,25,26], which regulates

its function. All IkB proteins are structurally similar, although the

factors governing their diverse functions remain elusive. The

solved X-ray crystal structures of IkBa-p50/p65 (PDB ID: 1IKN)

and IkBb-p65/p65 (PDB ID: 1K3Z), and recent molecular

modeling studies on the IkBf-p50/p50 and IkBf-p50/p65

complexes have revealed the molecular mechanisms of IkB

proteins in innate immunity [14,16,21]. However, no structural

information on the activation and inhibition of the remaining IkB

(IkBNS, IkBe and Bcl-3) is known. Based on the biological

importance of IkB, we focused on creating models of IkBNS, IkBf
and IkBe to understand how they interact with their partners as

well as the molecular basis of its regulation. Furthermore, all

modeled structures (IkBNS, IkBf and IkBe) along with the three

crystal structures (IkBa, IkBb and Bcl-3) were subjected to MD

simulation using explicit solvent in order to identify and quantify

the differences in flexibility between their respective ARD

domains. The results from this study enabled us to glean and

understand several key biological insights into the structure-

function relationship within IkB proteins.

Materials and Methods

Homology modeling
The amino acid sequences of mouse IkBf, IkBe and IkBNS

were retrieved from the NCBI (accession number: NP_085115,

AAB97517 and AAL79957) database [27]. Homology modeling

was performed using the MOE program (MOE 2008.10;

Chemical Computing Group, Ryoka systems Inc, Japan). The

modeling procedure has been previously described [21], and the

same procedure was followed for modeling of IkBNS and IkBf.
Homology models for IkBNS and IkBf were built based on the

crystal structure of nuclear Bcl-3 protein (PDB ID: 1K1A), which

shared highest sequence identities with the two target sequences

(36.4% with IkBNS and 37.28% with IkBf). MOE-Align was used

to create a target-template alignment and were manually adjusted

based on the alignment results from the multiple sequence

alignment of IkBf ARD reported previously [28]. A series of 10

models for IkBf and IkBNS were independently constructed by

MOE using a Boltzmann-weighted randomized procedure

combined with logic for proper handling of the sequence insertions

and deletions. There was no difference in the number of secondary

structural elements and no significant main chain root mean

square (RMS) deviations among the 10 models. However, the

model with the best MOE packing score (-2.8597 and -2.4597,

respectively) was selected for full energy minimization.

In the case of IkBe, we first used the top two ranked templates

(Bcl-3 (1K1A) and IkBb (1K3Z)) whose sequence identities were

42% and 43.89%, respectively, for model building. With MOE, it

is not possible to perform modelling with multiple templates;

hence, we opted for Modeller 9V4 [29]. The multiple sequence

alignment (MSA) of IkBe with the Bcl-3 and IkBb sequences was

performed using MUSCLE [30]. Three dimensional (3D) models

were built based on a distance restraint algorithm imposed by the

MSA of the target sequence with template structures by applying

the CHARMM force field [31]. An optimization method involving

conjugate gradients and MD simulation with simulated annealing

was employed to minimize violations of spatial restraints. For the

model building, default parameters included in the ‘‘automodel’’

class were used. A series of 20 models were built, from which the

best final model was selected based on stereochemical and

energetic evaluations.

Molecular dynamic simulation
All MD simulations were performed using YASARA dynamics

with an AMBER99 force field [32]. In this study, we conducted

MD simulations for six proteins (IkBa, IkBb, IkBe, Bcl-3, IkBf
and IkBNS). It is noteworthy that the crystal structures of both

IkBa (95–101) and IkBb (154–157) had the missing residues,

which were built prior to the dynamics. A simulation cell was

constructed around the model with a 7.9 Å cutoff for Lennard-

Jones forces and the direct space portion of electrostatic forces,

which were calculated using the Particle Mesh Ewald method. The

pKa values of the ionizable groups in the model were predicted

and used to assign the protonation states based on pH 7.0. The

cell was filled with water, and the AMBER99 electrostatic

potential was evaluated for all water molecules; the one with the

lowest and highest potential were turned into sodium and chloride

counter ions until the cell was neutral. A short steepest descent

minimization of all atoms was performed to remove severe bumps

in the protein. A start-up simulation was then carried out for 5

picoseconds (ps) using a multiple time step of 1 femtosecond (fs)

[33] for intramolecular forces and 2 fs for intermolecular forces,

with all heavy protein atoms fixed such that the solvent molecules

smoothly covered the protein surface. Simulated annealing

minimizations were carried out at 298 K, and the velocities were

scaled down every 10 steps for a total time of 5 ps in 500 steps. All

systems were equilibrated for 2 ns. Finally, production was carried

out for 15 ns by storing the coordinates of all the atoms every 5 ps

for further analysis. The simulations were carried out using the
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AMBER99 force field at 298K and 0.9% NaCl [34]. The final

snapshot at the end of the simulation was used as a reference to

calculate the root mean square deviation (RMSD) for each amino

acid during the last 5 ns MD trajectory. The RMSD calculations

obtained from the MD simulations for each case were conducted

only after the protein had reached an equilibrium stable state.

Assessment of the models
The quality of protein geometry was checked by employing

ProQ [33], ModFOLD [35] and MetaMQAP [36]. The structural

superimpositions and molecular electrostatics involved in the

structural analysis were carried out using Superpose v1.0 [37] and

Pymol (http://apbs.sourceforge.net), respectively [38].

Protein-protein docking and binding site prediction
We used unrestrained pairwise docking for the three IkB-NF-kB

complexes: IkBe-p50/p65, IkBNS- and Bcl-3-p50/p50 dimer.

The individual structures (IkBe, IkBNS and Bcl-3) for docking

were obtained from the final snapshots of MD simulation. Prior to

docking, only the PDB coordinates (p50 homodimer (PDB ID:

1NFK) and p50/p65 heterodimer (PDB ID: 1NFI)) were pre-

processed for energy minimization using the AMBER99 force field

distributed in the MOE. Molecular docking was performed using

the protein-protein docking software GRAMM-X [39] and

ZDOCK [40], which are the most widely used rigid-body

protein-protein docking programs for predicting and assessing

the interactions between the above complexes. These two

programs rank the 100 most probable predictions out of thousands

of candidates based on the geometry, hydrophobicity and

electrostatic complementarity of the molecular surface. The final

docked complexes were chosen from these top 100 lists by

considering the knowledge from the biochemical data: the N-

terminal RHD of the p50/p50 homodimer is already in a bound

state with the DNA (demonstrating the impossibility of binding

IkB proteins) [41,42]. Since only the C-terminal dimerization

region remained, we have hypothesized that this region might play

a crucial role in the binding of IkB proteins. Our hypothesis is

bolstered by previous data on the prediction of the Bcl3-p50/p50

and IkBf-p50/p50 complexes [4,21]. Additionally, cytoplasmic

IkBe proteins mask the NLS of the p50/p65 complex, thereby

preventing its translocation into the nucleus, and this is in

agreement with previously solved cytoplasmic IkB proteins

[13,14,16]. The final docked complexes were subjected to energy

minimization in three rounds. Partial charges were assigned to the

protein after adding each of the hydrogen atoms (residues of Asp,

Glu, Lys and Arg were considered ionized, whereas His residues

were considered to be neutral) by employing the AMBER99 force

field distributed in the MOE package. In the first round,

constraints were applied to the heavy atoms, thereby allowing

the mobility of all hydrogen atoms. In the second energy

minimization round, only the backbone chain was constrained,

whereas the side chains were allowed to move. In the third energy

minimization round, only the Ca atoms were constrained, and all

other atoms were allowed to move. All of the above energy

minimizations were conducted using both the steepest descent and

conjugate gradient protocols. The buried surface interaction areas

of the dimer models were calculated using the PROTORP server

(protein-protein interface analysis) [43].

Results and Discussion

Homology models of IkBf, IkBe and IkBNS
In general, the success of a homology model is related to the

degree of sequence identity, the similarity between the target and

template, selection of a suitable template and optimal alignment.

To date, the X-ray crystal structures of three IkB proteins (IkBa,

IkBb and Bcl-3) have been determined [4,13,14]. Based on its

high sequence identity, nuclear Bcl-3 acts as a suitable template for

IkBf and IkBNS modelling. In the case of IkBe, IkBb and Bcl-3

serve as templates. In IkBf modelling, we deleted a 28 residue

insertion, which was located between a1 and a2 of the fourth

ANK repeat. The reason for deletion of this insertion region has

been previously described [21]. Nevertheless, we also observed a

20 amino acid residues insertion in IkBNS corresponding to IkBf.
In our modelling studies on IkBNS, we did not delete these 20

residues because we wanted to investigate whether or not this

portion would reveal any functional significance by MD

simulation studies. The sequence alignments, which were used in

the construction of the models, are shown in Figure 1. The final

models were composed of seven ANK repeats, all of which are in

agreement with the secondary structure prediction made by Jpred

[44]. The JOY [45] output also shows that the residues in the

models are in environments similar to those of the templates. Each

ANK repeat of the constructed models depicted two anti-parallel

a-helices, followed by a loop of variable length at a right angle.

Each repeat began and ended with short b-hairpin turns that

protruded away from a-helix. This non-globular fold was

stabilized through intra- and inter-repeat hydrophobic interac-

tions. A direct comparison of the modelled structures against the

Bcl-3 template revealed the following differences: (i) within the

IkBe ANK1 interhelical turn and also in between ANK repeats 1–

2, 4–5 and 6–7. Moreover, the a2 helix of ANK6 was larger than

the template with an overall RMSD of 2.4 Å. (ii) within the IkBf
ANK6 and 7 interhelical turn and also in between ANK repeats

3–4 and 5–6 with a RMSD of 1.44 Å. (iii) within the IkBNS

ANK3 and 7 interhelical turn and also in between ANK3–4 and

5–6 with a RMSD of 1.64 Å (Figure 2). Finally, among the IkB

proteins, IkBa and IkBb have only six ANK repeats, whereas the

rest of the proteins (IkBe, Bcl-3, IkBf and IkBNS) have seven

ANK repeats.

Comparison of cytoplasmic and nuclear IkB proteins
The crystal structures (IkBa, IkBb and Bcl-3) were superim-

posed with the modeled structures (IkBe, IkBf and IkBNS). The

results showed that the RMSD ranged from 1.6 to 2.6 Å,

indicating that all structures had similar fold (Figure 3A).

Significant deviations were observed between the interhelical turn

and also in between the ANK repeats. Notably, a long insertion

region was observed within the ANK4 repeats of IkBNS. MD

simulation studies further illustrated that this portion possesses

only two flexible residues (Met182 and Leu183), which allows it to

bind with its partners. However, these two residues did not

participate in our currently predicted docking poses. Previous

studies on IkBf have shown a similar kind of insertion, but no

functional significance was observed regarding binding with its

partners [21]. Unlike nuclear protein, cytoplasmic IkBb contains a

unique insertion between ANK3-ANK4, and this region is

important for masking the NLS of p65 subunit B [16].

Comparison of the structure of IkBa in its bound state with

those of other IkB proteins revealed some significant differences at

both the N- and C-terminal ends. For IkBa, N-terminal amino

acids 71–76 adopted a hairpin conformation. Acidic residues

(Asp73 and Asp75) of b-hairpin loop interacted with basic residues

(Lys301, Arg302 and Arg304), which are known to be important

for NLS. Other cytoplasmic proteins such as IkBb (Asp57 and

Asp59) and IkBe (Asp122 and Asp124) adopted a similar

conformation as that of IkBa, possibly due to interaction with

NLS basic residues. On the other hand, the N-terminal region of

An In Silico Analysis of IkB Proteins
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nuclear IkB followed a perpendicular course in which the

corresponding Bcl-3 (Asp126 and Asp128), IkBf (Asp453 and

Asp455) and IkBNS (Glu62 and Asp64) side chains point in

opposite directions (Figure 3B). Huxford et al., have shown that p65

NLS is the principal specificity motif involved in determining the

binding of cytoplasmic IkB proteins [46]. Conversely, our findings

clearly demonstrated that nuclear IkB did not have any influence

on p65 NLS, and hence it was not able to bind with p65

containing NF-kB dimer, which is in accordance with previously

reported biochemical studies [19,28]. At the C-terminal end, due

to the lack of PEST motif, we eliminated IkBb and considered

only the remaining proteins. The results show that ANK7 of Bcl-3,

IkBf, IkBNS, IkBe and the PEST motif of IkBa were composed

of approximately the same number of residues. In addition, these

regions occupied similar length and the entire assembly was

positioned below ANK repeat 6. However, Bcl-3, IkBf, IkBNS

and IkBe were oriented in the opposite direction of the PEST

backbone of IkBa and ended abruptly, leaving the C-termini of

the other IkB proteins (Bcl-3, IkBf, IkBNS, IkBe) as well as IkBa
oriented in the opposite direction of the ARD (Figure 3A).

Electrostatic potential studies revealed that the C-terminal

regions of cytoplasmic IkB were highly negatively charged (Figure

S1A, B and C), and these portions were located near the DNA

binding domain. Due to the overall negative charge of DNA, there

exists electrostatic repulsion between the complex and the DNA

that forces the complex back to the cytoplasm. However, the

nuclear protein has both negatively and positively charged surfaces

(Figure S1D, E and F) whose functions (positive and negative

regulation) depend mainly upon its binding orientation.

Structure refinement and stability evaluation
The available IkB crystal coordinates (IkBa, IkBb and Bcl-3)

along with constructed models (IkBe, IkBf and IkBNS) were

subjected to MD simulation in order to assess the stability of the

model. Figure 4 shows the backbone RMSD plot for the protein

Ca-atoms with reference to the initial structure and as a function

of time. The plot shows that the equilibrium state was reached

only after 1 ns of simulation and was kept constant until the end of

the dynamics. Superimposition of initial structure with the final

refined structure in each case revealed the following structural

rearrangements: (i) in between all ANK repeats of IkBa and also in

the PEST motif with a RMSD of 3.2 Å, (ii) within the interhelical

turn of IkBb ANK1 and 6 and also in between ANK repeats 1–2,

2–3 and 3–4 with a RMSD of 1.7 Å, (iii) in between all ANK

repeats of IkBe with a RMSD of 3 Å, (iv) in between the Bcl-3

ANK repeats of 1–2, 2–3 and 3–4 with a RMSD of 2 Å, (v) within

the interhelical turn of IkBNS ANK4 insertion and ANK6 and

also in between ANK repeats 1–2, 3–4, 5–6 and 6–7 with a

RMSD of 3.5 Å, and (vi) within the interhelical turn of IkBf
ANK1, 6 and 7 and also in between ANK repeats 1–2, 2–3, 3–4,

5–6 and 6–7 with a RMSD of 2.6 Å (Figure S2).

We then took the final snapshots of IkBe, Bcl-3 and IkBNS and

subjected them to energy minimization. Model evaluation

involved analysis of geometry, stereochemistry and energy

distribution of the optimized models. The evaluation listed in

Table 1 indicated high quality for all of the models in terms of

overall packing. These models were subsequently used for protein-

protein docking studies.

Pairwise docking of IkB-NF-kB complex
The structural interactions between IkBa, IkBb and IkBf and

their partners have been described previously [13,14,16,21].

However, the structural interactions between Bcl-3, IkBb and

IkBNS and their partners are not yet available. The unavailability

of these IkB-NF-kB complexes remains as an obstacle to

understand the structural basis of their regulation. Regarding the

previously solved crystal structure of Bcl-3, the possible interac-

tions with p50/p50 homodimer have been identified by superim-

posing Bcl-3 and p50 homodimer onto IkBa and p50/p65,

respectively [4]. Using the same procedure for Bcl-3, we identified

large steric clashes between these complexes. Hence, we

performed protein-protein docking studies to obtain the possible

binding mode between Bcl-3, IkBb and IkBNS and its partners.

The goal of the protein-protein docking studies were conducted for

two main reasons (i) to understand the structural basis of IkB

activation and inhibition mechanism and (ii) to validate whether or

not the identified flexible residues from the MD studies correlated

well with our current molecular docking studies.

The procedure of protein-protein docking is highly computa-

tionally oriented. The reliability of the docking results strongly

depends on the quality of the docking methods. In order to verify

the prediction confidence of the IkB-NF-kB interaction of both

methods (GRAMM-X and ZDOCK), we unrestrainedly inputted

IkBa-p50/p65 and IkBb-p65/p65, for which the heterodimeric

crystal structures are known, as test cases [14,16]. The native

dimerization structure of IkBa-p50/p65 and IkBb-p65/p65 were

present in the top 100 solutions of both GRAMM-X and ZDOCK

and was ranked first by both GRAMM-X and Z-DOCK (Figure

Figure 2. Comparative modeling of ARD. Pair-wise structural
superimposition of the modeled ANK repeats: (A) IkBe (colored in sky
blue), (B) IkBNS (colored in orchid) and (C) IkBf (colored in light green)
with common structural template Bcl-3 (colored in yellow).
doi:10.1371/journal.pone.0015782.g002

Figure 1. Structure-based sequence alignments of ARD domains. The JOY program was used to annotate the alignments for Bcl-3, IkBa, IkBf,
IkBNS, IkBe and IkBb. Numbers on top of amino acid sequences are alignment positions. Key to JOY annotations is as follows: solvent inaccessible -
UPPER CASE; solvent accessible - lower case; a-helix - dark grey shaded; hydrogen bond to main chain amide - bold; hydrogen bond to main chain
carbonyl - underline; positive Q - italic. The blue colored asterisk represents insertion at that point which has been deleted.
doi:10.1371/journal.pone.0015782.g001
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S3A and B). This test highlights the feasibility and reliability of

GRAMM-X and Z-DOCK applied in IkB-NF-kB docking;

hence, we used them in our subsequent docking calculations.

To elucidate how IkBe binds with the p50/p65 complexes and

prevents their translocation into the nucleus, and also how Bcl-3

and IkBNS bind to the p50 homodimer, which mediates

transcriptional activation and inhibition, we conducted unre-

strained rigid-body docking of Bcl-3-p50/p50, IkBe-p50/p65 and

IkBNS-p50/p50 dimers. Each docking returned the 100 most

probable models from unbound monomer components. Thus,

each complex received a total of 200 candidate models separated

into two sets. Some models from the same set had similar

conformations, whereas most differed considerably from one

another. There were some shared models (intersection) across both

sets for each complex. These shared models were considered as

more confident solutions than others. The optimal docking

solution for each complex was selected from the 200 candidates

based on the following criteria: (i) models that do not exist in the

intersection of the two resulting sets were excluded; (ii) include

only those shared models in which the binding region is supported

by the experimental data (see methods). This two-step filtering

method led to a unique solution. The ZDOCK/GRAMM-X

ranking and the buried surface interaction area of all optimal

models are provided in Table 2. The top-ranked complex from

Table 2 is considered as the final complex that was subsequently

subjected to energy minimization and the identification of the

residual interface. Additionally, in order to compare the subtle

differences observed among various multiplexes (IkBe-p50/p65,

IkBNS-p50/p50, Bcl3-p50/p50 activation and Bcl3-p50/p50

inhibitory complexes), we have listed the top five complexes in

Figure 3. Comparison of IkB structures. (A) Superimpositions of IkBa, IkBb IkBe, Bcl-3, IkBNS and IkBf are shown in yellow, aquamarine, sky blue,
khaki, orchid and light green, respectively. Major differences were observed within the residue-joining ANK repeats and also between ANK repeats
that are represented by dots and asterisks, respectively. (B) Difference between cytoplasmic and nuclear IkB proteins. The conformational differences
in the N-terminal residues are indicated by double-headed arrow.
doi:10.1371/journal.pone.0015782.g003

Figure 4. Molecular dynamic trajectory-based analyses of model refinement. RMSD of the Ca atoms with respect to their initial structure
show the stable nature of the model after the initial equilibration time.
doi:10.1371/journal.pone.0015782.g004
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each multiplex whose orientations are more or less similar to the

final complexes as shown in Figures 5, 6, 7 and 8. Their

corresponding interacting residues, H-bonds, salt bridges and

interface areas are presented in Tables S1.

IkBe-p50/p65
Previous studies have shown that IkBe inhibits the DNA

binding of p50/p65 subunits [2,15], thereby modulating the

transcriptional activity mediated by NF-kB. However, there is no

structural interpretation of this experimental data. To this end, we

carried out molecular docking studies that led to two candidate

models after two-step filtering, which are ranked 4/24 by

ZDOCK/GRAMM-X respectively. However, we took the top

ranked complex provided by ZDOCK and identified the crucial

interface residues. The interface of the IkBe-p50/p65 complex

was separated from p50/p65 heterodimer by 1339 Å2 and from

IkBe by 1360 Å2 (Figure 5A). In this complex, we evaluated the

interacting residues, number of interchain H-bonds, salt bridges

and interface surface area (Table 3). In particular, IkBe and the

p50/p65 complexes form seven hydrogen bonds, which included a

double H-bond between IkBe Asp122 and p65 Arg304. Further,

the OH group of Tyr158 forms two H-bonds with the carbonyl

oxygen of Pro352 and backbone nitrogen of Ile354 (Figure 5B and

C). Five salt bridges were also observed between the complexes.

The interface region of IkBe is composed of three negatively

charged and four positively charged residues. In the case of p50-

p65 complex interface, four negatively and five positively charged

amino acids are exposed. These data suggest that the predominant

interactions between IkBe and p50/p65 are based on electrostatic

interactions.

The majority of the specific interactions are made between

ANK repeats 1, 2 and 3 of IkBe and the NLS-containing C-

terminal portion of p65 subunit A (NLS polypeptide; p65 amino

acids 291–319). These interactions are similar to those observed in

between the IkBa-p50/p65 and IkBb-p65/p65 complexes

[14,16]. In addition to the NLS, IkBe uses the loop region in

between ANK repeats 3–4 and 4–5 to make contact with the p50/

p65 dimerization region. The NLS polypeptide of p65 subunit A

possesses two helices with an approximately orthogonal relative

orientation. The last four amino acids of the first helix, Lys301,

Arg302, Lys303 and Arg304, constitute the functional NLS. Three

of these residues, Lys301, Arg302 and Arg303, contact six amino

acids (Asp122, Asp124, Ile32, His133 Glu134 and Gln155) from

the first ANK repeat of IkBe. All six amino acids are identical

between IkBa and IkBb. Therefore, it is not surprising that the

contacts made between p65 NLS and IkBe, IkBa and IkBb are

highly homologous between these complexes. Like IkBa and

IkBb, the NLS polypeptide region of NF-kB p65 subunit might be

the key specificity-determining motif for the interaction with IkBe
[46].

The present docking pose revealed that IkBe is tightly bound to

the NLS of p65 subunit A. However, due to lack of the p50 NLS

portion in the crystal structure, we were not able to identify its

interaction. It should also be noted that the primary sequences of

p50 (40–370) and p65 (29–347) share .80% similarity, with a 32

amino acid insertion at the p50 N-terminal end. Additionally, the

p65 NLS (Lys301, Arg302 and Arg304) corresponding residues are

Lys360, Arg361 and Lys363, respectively. By assuming that both

structures are identical, we have superimposed p65 homodimer

(considering p65 subunit B as p50) onto the IkBe-p50/p65

complex, followed by energy minimization of the resulting

complex. The results reveal that there are strong interactions

between IkBe (Leu116, Thr117, Asp124 and Thr125) and p50

NLS subunit B (Lys301, Arg302 and Arg304). Of the four residues

in IkBe, Asp124 and Thr125 are conserved between IkB families

(Figure 1). This current docking pose is likely to prevent the

complex from entering into the nucleus, which is in agreement

with previous biochemical reports [15]. The IkBe function is

similar to IkBa, but IkBe degradation and resynthesis occurs with

considerably delayed kinetics when compared to IkBa [3]. The

stimulus-induced degradation of IkB proteins (which masks the

NLS of NF-kB dimer) leads to the translocation of NF-kB into the

nucleus followed by binding with the DNA and subsequent

regulation of the transcription of numerous target genes. Newly

synthesized IkBe translocates into the nucleus and binds to NF-kB.

This complex must be exported back to the cytoplasm, thereby

terminating the transcriptional process, in order to prevent

excessive activation that leads to endotoxin tolerance. In the case

of IkBa, its PEST motif (Figure S1A, highlighted in dotted circle)

participates in electrostatic repulsion with the phosphate group of

DNA, thereby bringing the IkBa-p50/p65 complex back to the

cytoplasm [13,14]. However, no well-defined PEST motif has

been reported for IkBe [15]. Moreover, the electrostatic potential

studies of IkBe revealed a negatively charged surface present in

ANK7 that is composed of Glu342, Asp343, Ser346, Tyr347,

Pro349, Asp351, Asp352, Ser356 and Pro359 residues (Figure

S1C, highlighted in dotted circle). Our results suggest that this

region might play an important role in exporting the complex back

to the cytoplasm.

IkBNS-p50/p50
TLR-dependent gene induction is also regulated by nuclear IkB

proteins such as Bcl-3, IkBf and IkBNS. In vitro experiments

indicated that IkBNS is induced by IL-10 or LPS and selectively

inhibits MyD88-dependent genes, including IL-6, IL-12p40 and

IL-8, by association with DNA-bound p50 homodimer [19].

Table 1. Model evaluation.

ProQ_LG/MX ModFOLD_Q/P MetaMQAP_GDT/RMSD

IkBa 6.381/0.235 0.9714/0.0411 63.801/2.62

IkBb 6.795/0.373 0.9880/0.0411 76.705/1.81

IkBe 4.715/0.186 0.8786/0.0494 53.213/3.68

Bcl-3 6.432/0.367 0.9962/0.0411 79.162/1.58

IkBNS 6.172/0.283 0.8731/0.0511 61.661/2.89

IkBf 5.622/0.294 0.9849/0.0411 72.708/2.06

Note: ProQ_LG: .1.5 fairly good; .2.5 very good; .4 extremely good.
ProQ_MX: .0.l fairly good; .0.5 very good; .0.8 extremely good. ModFOLD_Q:
.0.5 medium confidence; .0.75 high confidence. ModFOLD_P: ,0.05 medium
confidence; ,0.01 high confidence. MetaMQAP_GDT/RMSD: an ideal model has
a GDT score over 59 and a RMSD around 2.0 Å.
doi:10.1371/journal.pone.0015782.t001

Table 2. Ranking and interaction area of the selected docking
complex.

ZDOCK GRAMM-X Interaction area (Å2)

IkBe-p50/p65 4 24 1339

IkBNS-p50/p50 2 56 1708

Bcl-3-p50/p50 (a) 45 62 1585

Bcl-3-p50/p50 (b) 57 38 1246

doi:10.1371/journal.pone.0015782.t002
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IkBNS is structurally similar to IkBf, but unlike IkBf, which

regulates transcription by binding with DNA bound p50

homodimer [21], the structural factors responsible for IkBNS-

mediated negative regulation of TLR-induced NF-kB-dependent

genes remain unknown. To this end, we carried out molecular

docking studies and identified the final IkBNS-p50/p50 complex

(Figure 6A). The buried surface at the interface of the IkBNS-p50/

p50 complex was separated from the p50/p50 homodimer by

1708 Å2 and from IkBNS by 1844 Å2. We evaluated the

interacting residues, the number of interchain H-bonds, salt

bridges and the interface surface area (Table 4). Ten hydrogen

bonds were present at the interface, of which ten are donated by

IkBNS and nine are from the p50/p50 complex (Table 3). These

included two hydrogen bonds formed between the OH group of

Thr261 (IkBNS) and the carbonyl group of p50 (subunit B) Gly99

and Thr128 (Figure 6B and C). The strongest salt bridge was

observed between IkBNS Arg95 and P50 Asp350. The interface

region of IkBNS is composed of six negatively charged and nine

positively charged residues. In the case of p50/p50 complex, the

interface region consists of seven negatively and eight positively

charged amino acids. These data suggest that the predominant

interaction between IkBe and p50/p50 is based on the

electrostatic interaction.

The majority of the specific interactions are made between

IkBNS ANK repeats 2–5 and the dimerization domain of p50/

p50. These interactions are similar to those observed between

IkBf and the p50/p50 complex [21]. Additionally, ANK7

interacts with the N-terminal region of p50 subunit B. Although

the binding orientations are similar for both IkB proteins, there

might be some differences in the regulation of LPS-mediated

secondary/late response gene induction by IkBf and IkBNS. Both

proteins are induced upon TLR stimulation; IkBf binds with

DNA-bound p50/p50 homodimer and regulates transcriptional

activity through its TAD in the N-terminal non-ARD [23].

Whereas for IkBNS, there is no well-defined TAD, indicating that

IkBNS-mediated transcription is unfeasible. Additionally, our

docking model places the finger loop region of ANK6 nearby the

minor groove region of the DNA. Electrostatic potential studies

have shown that the basic patches present at this position make

this candidate suitable for polar interactions with the backbone of

DNA (Figure S1E, highlighted in circle). Due to the strong

electrostatic interactions between the IkBNS-p50/p50 complex

and DNA phosphate backbone, the complex remains as such in

the nucleus. Our results suggest that this complex might act as an

inhibitor for two reasons: (i) due to lack of TAD in both IkBNS

and p50 homodimer, and (ii) lack of negatively charged surface in

Figure 5. IkBe ARD-p65/p50 heterodimer interface. (A) The p50/p65 heterodimers represented as a ribbon diagram are shown in light green
and yellow, respectively. Docked IkBe is represented in sky blue color in the ribbon diagram, and flexible residues involved in the interactions are in
red color. (B) p65-IkBe binding interface. Side chains of the amino acids contributing to hydrogen bonding formation (marked as black dotted lines)
are represented by a stick model with the residue names and numbers shown next to them. (C) p50-IkBe binding interface is also represented in a
similar fashion as (B).
doi:10.1371/journal.pone.0015782.g005
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IkBNS, which is located near DNA, making it unfeasible to

replace the p50 homodimers with transcriptionally active dimers.

Therefore, IkBNS suppresses MyD88-dependent genes by associ-

ating with DNA-bound p50 homodimers, thereby preventing the

binding of transcriptionally active NF-kB dimers to DNA.

Furthermore, in IkBNS-deficient mice, LPS-induced activation

of NF-kB is prolonged [19]. As a result, mice turned out to be

susceptible to intestinal inflammation caused by the disruption of

the epithelial barrier. Briefly, the present docked complex mode

clearly explains the inhibitory mechanism of IkBNS, thereby

preventing excessive inflammation, which is in accordance with

previous biochemical studies [19,47].

Bcl-3-p50/p50
In vitro studies revealed that overexpression of Bcl-3 results in

NF-kB-mediated gene expression or gene suppression, depending

on the conditions, via association with p50 or p52 homodimer,

which indicates its potential role as either an activator or inhibitor

in TLR signaling [5]. Binding of Bcl-3 with p50 or p52

homodimer leads to three different results: (i) p50 and p52 lack

TADs and are therefore repressive, but binding to Bcl-3 (which

contains a well-defined TAD) possibly confers transcriptional

activity, (ii) Bcl-3 might facilitate transcription by displacing the

p50 and p52 homodimers, thus allowing transcriptionally active

dimers to take their place, and (iii) Bcl-3 inhibits NF-kB-dependent

transcription by stabilizing the p50 and p52 homodimers that are

bound to the kB sites [2,4,20,48]. Since the structural mechanisms

of Bcl-3-mediated activation and inhibition remain elusive, we

conducted molecular docking studies and identified two different

orientations of Bcl-3 binding with p50 homodimer, thus

illustrating the dual roles exhibited by Bcl-3 in NF-kB signaling.

We named these complexes as A and B, respectively. In complex

A, Bcl-3-p50/p50 mediates transcription via Bcl-3 TAD, whereas

in complex B, Bcl-3 facilitates transcription by displacing p50

homodimer, thereby allowing binding of the transcriptionally

active dimers.

Complex A
The buried surface at the interface of the Bcl-3-p50/p50

complex is separated from the p50/p50 homodimer by 1585 Å2

and from Bcl-3 by 1644 Å2 (Figure 7A). Nine H-bonds are present

at the interface, of which seven are donated by Bcl-3 and eight by

the p50/p50 complex (Table 5). These included a double

hydrogen bond between p50 (subunit B) Arg255 and Bcl-3

Asp261. The Bcl-3 Arg230 side chain also forms two H-bonds

with p50 (subunit B) Cys259 and Thr261 (Figure 7B and C). Two

salt bridges were also observed between Bcl-3 Asp261 and Asp326

as well as P50 Arg255 and Lys343. The predominant interactions

between Bcl-3 and p50/p50 are based on the electrostatic

interactions. The majority of the specific interactions are made

between Bcl-3 ANK repeats 4–7 and the dimerization domain of

p50/p50. No portion of Bcl-3 was observed as overlapping the

DNA binding region or in close proximity to the DNA. These

interactions are identical to those observed in the IkBf-p50/p50

Figure 6. IkBNS ARD-p50/p50 homodimer interface. (A) The p50/p50 homodimers represented as a ribbon diagram are shown in light green
and sky blue, respectively. Docked IkBNS is represented in orchid color in the ribbon diagram, and flexible residues involved in the interactions are
red colored. (B) The p50 (chain A)-IkBNS binding interface. Side chains of the amino acids contributing to hydrogen bonding formation (marked as
black dotted lines) are represented by a stick model with the residue names and numbers shown next to them. (C) The p50 (chain B)-IkBNS binding
interface is also represented in a similar fashion as (B).
doi:10.1371/journal.pone.0015782.g006
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complex [21]. When we compared the Bcl-3 binding orientation

with the cytoplasmic IkB protein crystal structures, the results

showed that Bcl-3 binding tilted 15 degrees towards the right hand

side. It is noteworthy that DNA-bound p50/p50 dimer did not

mediate transcription due to the lack of TAD. However, previous

biochemical studies have shown that Bcl-3 possesses a well-defined

TAD [2,48]. Based on our current model, we propose that Bcl-3

can mediate transcriptional activity by binding with DNA-bound

p50/p50 dimer, thereby providing a transactivation domain to the

NF-kB complex. Previous studies using a Bcl-3 2/2 macrophage

cell line have shown that Bcl-3 positively regulates the expression

of IL-10 [20]. Finally, the structural mechanism of Bcl-3 positive

regulation can be elucidated by our present docked complex.

Complex B
The buried surface at the interface of the Bcl-3-p50/p50

complex is separated from the p50/p50 homodimer by 1246 Å2

and from Bcl-3 by 1216 Å2 (Figure 8A) Eight H-bonds are present

at the interface, of which six are donated by Bcl-3 and eight by the

p50/p50 complex (Table 6). These included two hydrogen bonds

formed between the OH group of Bcl-3 Tyr299 and the p50

(subunit B) side chains of Lys312 and Asp297. Additionally, the

carbonyl oxygen of Bcl-3 Tyr299 forms a H-bond with the OH

group of p50 (subunit B) Thr301 (Figure 8B and C). A salt bridge

is also observed between Bcl-3 Asp326 and P50 Lys249. In our

final model, the interactions are made between Bcl-3 4-6 ARD

and the DD of the p50 subunits. Though the binding orientation is

similar to complex A and IkBNS-p50/p50, the major difference

observed for complex B is the position of Bcl-3 ANK7 placed near

the minor groove of the DNA, with four residues (Asp326, Ser327,

Ser328 and Lys330) possibly as good candidates for making polar

interactions with the DNA backbone (Figure S1D, highlighted in

dotted circle). Generally, the ability of Bcl-3 to facilitate or inhibit

transcriptional activity is determined by post-translational modi-

fication [48,49,50]. Though there is no well-defined PEST motif in

Bcl-3, we made a note of few Ser residues located at the C-

terminal end. During post-translational modification, phosphory-

lation of these Ser residues might consequently destabilize the Bcl-

3-p50/p50-DNA complex by electrostatic repulsion with the DNA

phosphate groups. This results in binding of the active NF-kB

dimer to the DNA, resulting in transcription. However, such

transcriptionally regulated genes have not yet been identified.

Identification of flexible residues in Cytoplasmic IkB
proteins

To identify mobile structural elements, the atomic positional

fluctuations for all IkB backbone atoms were monitored during the

simulation time. A residue-based description of the local flexibility

was obtained by calculating root mean square fluctuation (RMSF)

values. The backbone RMSF values were calculated over the final

5 ns of the MD simulation. Residues that deviated more than 1 Å

were considered to be highly flexible elements of the protein.
(i) IkBa. MD simulation studies have identified 32 amino

acids with high RMSD fluctuations in IkBa. The most

thermodynamically flexible residues in IkBa are: five residues

(Asp73, Asp75, Glu85, Arg95 and Gln96) in ANK1; two (Asn109

Figure 7. Complex A (Bcl-3 ARD-p50/p50 homodimer) interface. (A) The p50/p50 homodimers represented as a ribbon diagram are shown in
purple and blue, respectively. Docked Bcl-3 is represented in khaki color in the ribbon diagram, and flexible residues involved in the interactions are
red colored. (B) The p50 (chain A)-Bcl-3 binding interface. Side chains of the amino acids contributing to hydrogen bonding formation (indicated by
black dotted lines) are represented by a stick model with the residue names and numbers shown next to them. (C) The p50 (chain B)-Bcl-3 binding
interface is also represented in a similar fashion as (B).
doi:10.1371/journal.pone.0015782.g007
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and Leu110) in ANK2; four (Phe142, Arg143, Leu172 and

His173) in ANK3; one (Cys215) in ANK5; and twenty (Trp258,

Arg260, Pro261, Ser262, Thr263, Arg264, Gln267, Met279,

Glu282, Ser283, Glu284, Asp285, Glu286, Glu287, Ser288,

Tyr289, Asp290, Thr291, Glu292 and Ser293) in ANK6 along

with its PEST motif (Figure 9A and S4A). Previous biochemical

and crystallographic studies have shown crucial IkBa residues,

which are liable to interact with p50/p65 heterodimer, thereby

controlling the NF-kB subunits shuttling between the cytosol and

nucleus [13,14,21,51]. Please note that in our current study, we

conducted the MD simulation of IkBa without its partners to

identify whether or not the flexible residues mediate the

interaction between IkBa and its partners. However, it is

interesting to note that 19 out of the 32 most flexible residues,

namely Asp73, Asp75, Glu85, Gln96, Asn109, Leu110, Arg143,

Cys215, Trp258, Thr263, Gln267, Met279, Glu282, Glu284,

Asp285, Glu286, Glu287, Ser288 and Tyr289, are considered to

be essential for the interaction with p50/p65 subunits. Of these,

Asp73, Asp75 and Glu85 of IkBa form a salt bridge with Lys301,

Arg304 and Arg302 of the p65 NLS, respectively [13]. These salt

bridges play a crucial role in masking the p65 NLS and thereby

retaining the p50/p65 subunits in the cytoplasm. Apart from these

interactions, Arg143, Cys215 and Trp258 form H-bonds with

p65/p50 DD, further stabilizing the complex. Out of the 32

flexible residues, 12 encompass the PEST sequence, which plays

an important role in direct electrostatic interactions with basic

DNA binding loops, leading to dissociation of the p65 N-terminal

end from DNA. Previous mutagenesis studies have shown that

Glu282, Glu284, Asp285, Glu286 and Glu287 are considered to

be important in mediating electrostatic interaction with p65 N-

terminal domain [51] and are identified as highly flexible residues

in our current study. These results suggest that IkBa is more

flexible in finger loop regions, and this increased flexibility might

play a crucial role in interactions with its partners. From the above

results, we believe that our current approach is reliable and can be

subsequently used for other IkB proteins.

(ii) IkBb. RMSD analysis during the MD trajectory identified

eighteen residues with large RMSD values in IkBb. Of these, ten

residues are mapped (Val50, Phe51, Gly52, Tyr53, Glu56, Asp57,

Asp59, Ile67, Gln69 and Phe76) in ANK1, two residues (Tyr205

and Arg227) in ANK4, three residues (Arg275, Asp303 and

Gly304) in ANK6 and one each in ANK2 (Leu121), ANK3

(His140) and ANK5 (Thr239) (Figure 9B and S4B). Since the

crystal structure of the IkBb-p65/p65 complex is known,

interpreting our predicted results is straightforward. It is

remarkable to note that 12 out of the 18 thermodynamically

flexible residues, namely Gly52, Tyr53, Glu56, Asp57, Glu59,

Ile67, Gln69, Phe76, Leu121, Tyr205, Thr239 and Arg275, are

considered to be crucial residues in mediating the interaction with

p65 homodimer [16]. Of those, IkBb Glu59, Gln69 and Asp57

form H-bond with Lys301, Arg302 and 304 of the p65 NLS,

respectively. Additionally, Glu56, Ile67 and Gln69 form van der

Figure 8. Complex B (Bcl-3 ARD-p50/p50 homodimer) interface. (A) The p50/p50 homodimer represented as a ribbon diagram are shown in
rosy brown and blue, respectively. Docked Bcl-3 is represented in khaki color in the ribbon diagram, and flexible residues involved in the interactions
are red colored. (B) The p50 (chain A)-Bcl-3 binding interface. Side chains of the amino acids contributing to hydrogen bonding formation (indicated
by black dotted lines) are represented by a stick model with the residue names and numbers shown next to them. (C) The p50 (chain B)-Bcl-3 binding
interface is also represented in a similar fashion as (B).
doi:10.1371/journal.pone.0015782.g008
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Waals interactions with the p65 NLS. The IkBb-p65/p65

complex is further stabilized by p-p stacking interactions

between IkBb Phe76 and p65 Phe318. Finally, Leu121, Tyr205,

Thr239 and Arg275 of IkBb interact with the p65 dimer interface,

further stabilizing the complex. Previous studies reported that the

IkBb PEST sequence exhibits flexibility, and thus it probably is

displaced from the DNA-protein interface [16]. The crystal

complex used for the MD simulation studies did not contain the

PEST motif; hence, we were not able to identify its flexibility. The

reported crystal structure suggested that p65 NLS subunit A is

tightly bound to IkBb, whereas subunit B is exposed. This mode of

binding is not likely to prevent the complex from entering the

nucleus. Therefore, this structure is a representative of

conformation adopted by the nuclear IkBb-p65/p65 complex.

However, the residues that did not participate in the above

interactions might adopt different conformations in order to bind

with p65/p65 dimer.

(iii) IkBe. RMSF calculations demonstrated that thirty one

amino acid residues of IkBe are thermodynamically flexible. Of

those residues, eleven are situated in ANK1 (Leu116, Thr117,

Tyr118, Glu121, Asp122, Asp124, Ser127, Val138, Cys142,

Leu143 and Glu149), nine in ANK3 (Gln189, Glu216, Pro217,

Gly218, Arg219, Gln220, Leu221, Ser222 and His223), three in

ANK6 (Leu299, Leu320 and Ala323), five in ANK7 (Leu340,

Ser346, Glu352, Ser356 and Glu364) and one each in ANK2

(Leu157), ANK4 (Leu225) and ANK5 (Thr266). As expected, the

finger loop regions of the model, especially between the ANK

repeats (24 residues), were found to be responsible for the

increasing fluctuations (Figure 9C and S4C). This flexibility

mediates the binding of IkBe to its partners. It is noteworthy that

10 out of the 31 thermodynamically flexible residues, namely

Asp122, Asp1124, Ser137, Val138, Glu149, Leu157, Gln189,

Thr266, Ser346 and Ser356, present in our docking model

interact with p50/p65 heterodimer. Similar studies have been

conducted previously on other proteins such as Smad7, CYPB1

and IkBf, whose identified thermodynamically flexible residues

have been shown to interact with both substrates and receptors

[21,52,53], further validating our docking model. It should also be

noted that stimulus-induced cytoplasmic IkB degradation results

in release of NF-kB to the nucleus, resulting in a transcriptional

response that includes the IkB genes. The newly synthesized IkB

protein enters into the nucleus and binds to NF-kB. Due to

electrostatic repulsion, these complexes are brought back to the

cytoplasm, thereby terminating the transcriptional process. During

this process, IkB possesses different binding orientations. The

remaining flexible residues that did not contribute in the above

interactions might undertake a different binding orientation in

order to bind with c-Rel and p65 containing NF-kB subunits

[15,54].

Identification of flexible residues in nuclear IkB proteins
(i) Bcl-3. Bcl-3 contains thirty thermodynamically flexible

residues. Of those 30 residues, nine are placed in ANK1 (Glu125,

Asp126, Gly127, Asp128, Thr129, Arg145, Leu149, Gln152 and

Glu156), six in ANK3 (Met191, Arg195, His196, Pro222, Gly223

and Thr224), three in ANK5 (Ile265, Lys266 and Gln289), seven

in ANK7 (Leu3229, Lys330, Asn334, Arg344, Arg345, Arg351

and Gly352), one in ANK2 (Arg164) and two each in ANK4

(Arg230 and Arg256) and ANK6 (Val294, Arg322) (Figure 9D and

S4D). It is interesting to note that 13 out of the 30 flexible residues,

namely Met191, Arg230, Arg256, Ile265, Lys266, Gln289,

Val294, Arg322, Leu329, Lys330, Asn334, Arg351 and Gly352,

are considered to be crucial residues in the interaction with p50/

p50 homodimer (Figure 7 and 8) and thereby in the transfer of the

TAD to p50/p50 subunits. Biochemical studies have shown that

Bcl-3 possesses diverse functions when in a complex with DNA-

bound p50 homodimer [2]. This leads to different possible

conformations of Bcl-3, which is in agreement with our current

docking studies (Figure 7 and 8). Residues that did not contribute

in these above interactions might be involved in those different

conformations.

(ii) IkBNS. Thirty thermodynamically flexible residues were

identified in Bcl-3. Of those residues, three are positioned in

ANK1 (Glu61, Glu62 and Gln91), five in ANK4 (Phe165,

Table 3. List of interactions between IkBe and the p50/p65 heterodimer.

Interacting residues

IkBe Asp122, Asp124, Leu126 Leu129, Ala130, Ile132, His133, Ala135, Ser137, Val138, Asn155, Asn156, Leu157, Tyr158, Gln159, Leu164, His167,
Leu168, Asp169, Gln189, His190, Asn203, Arg209, Trp232, Thr266, Ile355, Ser356

P65 subunit A Asp293, Asp294, Arg295, Ile298, Glu299, Lys301, Arg302, Arg304, Thr305, Phe309, Ile312, Met313

P50 subunit B Arg258, Thr325, Lys326, Pro327, Pro347, Tyr351, Pro352, Glu353, Ile354

Note: The charged residues are in bold while the residues involved in the formation of H-bonds are in italic.
doi:10.1371/journal.pone.0015782.t003

Table 4. List of interactions between IkBNS and the p50/p50 homodimer.

Interacting residues

IkBNS Arg90, Gln91, Ile94, Arg95, Glu96, His97, Gly99, Asn126, Thr128, Asp129, His130, Gly132, Phe152, Ile156, Val158, Asp159, Leu160,
Glu161, Arg163, Asp164, Phe165, Leu207, Gln208, Met209, Gly210, Ser212, Thr214, Ile218, Lys219, Ser220, Asn221, Arg249, Phe251,
His257, Gly285, Asp287, Pro288, Thr289, Arg291 Asn295, Lys302, Gln313

P50 subunit A His64, Lys74, Asn75, Lys77, Arg252, Asp254, Arg255, Thr256, Ala257, Cys259, Ser326, Glu341, Lys343, Pro344, Tyr348, Leu346

P50 subunit B Arg255, Cys259, Thr261, Gly262, Gly263, Glu264, Glu265, Asp297, Ser299, Pro300, Thr301, Asp302, Lys312, Lys315, Asn320, Tyr348,
Pro349, Glu350

Note: The charged residues are in bold while the residues involved in the formation of H-bond are in italic.
doi:10.1371/journal.pone.0015782.t004
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Met182, Leu183, Arg190 and Gln208), four in ANK5 (Ile218,

Lys219, Gln238 and Arg245), six in ANK6 (Arg249, Leu268,

Pro270, Gly271, Pro272 and Pro273), eight in ANK7 (Thr289,

Arg291, Leu293, Asn295, Arg302, Glu303, Arg312 and Gln313)

and two each in ANK2 (His97 and Lys98) and ANK3 (His130 and

Ile156) (Figure 9E and S4E). Of those 30 flexible residues, 11 are

considered to be important for interactions with p50/p50

homodimer (Figure 6) and thereby in the negative regulation of

TLR signaling. Previous studies have shown that IkBNS-deficient

T cells are characterized by decreased IL-2 production, suggesting

the positive regulation of IkBNS in a complex with DNA-bound

p50/p50 homodimer [55]. It should be noted that due to the lack

of a TAD in IkBNS, its positive regulation might be similar to

complex B. Like other nuclear IkB proteins that exhibit dual

functions when bound to their partners, IkBNS might also possess

different conformations and play dual roles in the transcriptional

process. The residues that did not contribute in the above binding

might play crucial roles into the formation of different

conformations. Additionally, IkBNS-mediated positive and

negative regulation of NF-kB gene expression might depend

upon the cell type expressing these genes.

(iii) IkBf. Forty-seven flexible residues were identified in

IkBf. Of those residues, eighteen are located in ANK1 (Gly452,

Asp453, Gly454, Asp455, Arg466, Arg467, Ala468, Tyr471,

Val472, Leu473, Ala474, Arg475, Met477, Asn478, Ala479,

Leu480, His481 and Met482), four in ANK2 (Lys486, Asn489,

Gln491 and Leu504), three in ANK5 (Cys618, Arg620 and

Lys621), eight in ANK6 (Leu645, Cys648, Phe651, Asn653,

Thr674, Gln675, Arg680 and Arg684) and seven each in ANK3

(Cys521, Lys533, Lys544, Val547, Arg548, Ser549 and Gln551)

and ANK7 (Arg692, Leu694, Pro707, Val708, Arg714, Lys717

and Gly718) (Figure 9F and S4F). The total number of flexible

residues identified in our current study is higher compared to our

previous studies, which is mainly due to the variation in methods

[21]. It is remarkable to note that eight out of the 47 most flexible

residues, namely Met477, Leu480, His481, Met482, Lys486,

Arg548, Glu644 and Cys648, are known to important in

mediating IkBf-p50/p65 complex formation and thereby in

inhibiting the transcriptional process. Additionally, nine residues

out of the 47, namely Lys618, Arg620, Lys621, Cys648, Phe651,

Asn653, Arg692, Lys717 and Gly718, are considered to be crucial

for IkBf-p50/p50 complex formation and thus in activating the

transcriptional response [21]. The remaining thirty amino acids

that did not participate in the above two interactions might

interact with Brg1, CEBP1 STAT3 and p50/p65-CEBP, thereby

regulating their function [22,23,24,25,26,56].

Prime factor for functional divergences in IkB proteins
The current studies have found that IkBa, IkBe, IkBNS and

Bcl-3 possess approximately an equal number of flexible residues

(30 amino acids), all of which are predominantly located in the

finger loop region. IkBb possesses a lower number of flexible

residues compared to other IkB proteins. This is mainly due to the

lack of a PEST motif in the structure; a corresponding motif in

IkBa alone possesses 12 flexible residues. These cytoplasmic IkB

proteins are structurally similar, and also the identified flexible

residues are equal in number. However, of these identified flexible

residues, only five (Asp73, Asp75, Gln96, Tyr181 and Cys215)

corresponding to IkBa in Figure 1 are conserved. Here, we did not

take into account residue conservation based on amino acid

physico-chemical properties; rather, flexible residual position

corresponding to IkBa was considered. In addition to the

electrostatic surface of these IkB proteins, variation in flexible

residual position might be the principal factor for the binding

specificities with different combinations of NF-kB dimer. Nuclear

IkB protein (IkBNS and Bcl-3) binds only p50/p50 homodimer

and also possesses the same number of flexible residues. In this

case, different conformations of IkB binding to p50/p50 dimer are

possible, which can be inferred by our docking studies. These

flexible residues might play a crucial factor in facilitating different

conformations of interactions, thereby regulating the transcrip-

tional response. Among these IkB proteins, IkBf possesses a

higher number of flexible residues (47 amino acid) compared to

the IkB family. This increased flexibility might promote an

Table 5. List of interactions between Bcl-3 and the p50/p50 homodimer (Complex A).

Interacting residues

Bcl-3 Met191, Asp226, Glu228, Ala229, Arg230, Arg252, Asp261, Val263, Ile265, Gly268, Leu288, Gln289, His290, Gly291, Ala292, Asn293,
Val294, Asn295, Gln297, Met298, Tyr299, Gly301, Leu320, Val321, Arg322, Ser323, Gly324, Ala325, Asp326, Ser328, Leu329, Lys330,
Asn331, Cys332, Asn334, Arg351, Gly352

P50 subunit A Lys74, Lys249, Ile250, Val251, Arg252, Met253, Asp254, Arg255, Thr256, Ala257, Pro324, Ser326, Val327, Phe328, Glu341, Pro342,
Pro344, Phe345, Leu346, Tyr348

P50 subunit B Arg255, Cys259, Thr261, Gly262, Gly263, Glu264, Glu265, Tyr267, Ser299, Thr301, Asp302, Val310, Lys312, Glu350

Note: The charged residues are in bold while the residues involved in the formation of H-bond are in italic.
doi:10.1371/journal.pone.0015782.t005

Table 6. List of interactions between Bcl-3 and the p50/p50 homodimer (Complex B).

Interacting residues

Bcl-3 Arg230, Leu254, Glu255, Arg256, Gly257, Asp259, Ile260, Asp261, Val263, Asp264, Ile265, Lys266, Gly268, Leu288, Gln289, His290,
Gly291, Ala292, Asn293, Tyr299, Ser300, Gly301, Asp326, Arg351, Gly352

P50 subunit A Glu73, Lys74, Tyr248, Lys249, Val251, Arg252, Met253, Asp254, Thr256, Pro324, Ser326, Lys343, Pro344, Phe345, Leu346, Tyr348

P50 subunit B Gly263, Glu264, Glu265, Tyr267, Asp297, Ser299, Thr301, Lys312, Thr313

Note: The charged residues are in bold while the residues involved in the formation of H-bond are in italic.
doi:10.1371/journal.pone.0015782.t006
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interaction with NF-kB dimer as well as with other nuclear

proteins, thereby regulating numerous transcriptional functions

[5,22,24,25,26,28,56].

In conclusion, we have observed that the highly flexible finger

loop portion contributes to major interactions with NF-kB.

Nevertheless, from crystal structures and modeling studies, we

observed conspicuous variations between cytoplasmic and nuclear

IkB proteins bound to NF-kB subunits. The finger loop regions of

cytoplasmic IkB proteins are on the left hand side, pointing

towards the DD domain of NF-kB dimer (Figure 5). Conversely,

the finger loop regions of nuclear IkB proteins are positioned on

the right hand side and project away from the DD of NF-kB dimer

(Figure 6, 7 and 8).

Taken together, we have elucidated models of IkB proteins,

carried out detailed MD simulation and identified thermodynam-

ically flexible residues. These thermodynamically flexible residues

are considered to be the key factors responsible for the exhibited

binding specificities with different combinations of NF-kB dimer.

Moreover, the docking studies allowed us to understand the

positive and negative regulation of IkB protein binding with

different NF-kB subunits in the context of TLR signaling. Finally,

our current models can be utilized as a guide for future

experimental and computational studies. The presented modeling

approach can also be extended to other repetitive protein

domains.

Supporting Information

Figure S1 Surface electrostatic representation of ARD.
A, B and C show the calculated electrostatic surface of the

cytoplasmic ANK repeat domain with blue-colored regions

depicting positively charged basic patches and red-colored regions

depicting negatively charged acidic patches. The negatively charged

acidic C-terminal PEST motif, which is known to be involved in

electrostatic repulsion, is circled in dotted lines. C, D and E possess

both positively and negatively charged surfaces at their C-termini,

which are marked in circled and dotted circled lines, respectively.

(TIF)

Figure 9. RMS deviations of individual amino acid residues of IkB proteins. A, B and C represent the results of the MD simulation for the
cytoplasmic ARD domains of IkBa, IkBb and IkBe, respectively, whereas D, E and F depict the RMSD fluctuation of the amino acid residues of nuclear
ARD domains of Bcl-3, IkBNS and IkBf during the MD simulation. In each case, amino acid residue numbers (actual) are plotted on the x-axis and RMS
deviations (in Angstrom units) are plotted on the y-axis.
doi:10.1371/journal.pone.0015782.g009
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Figure S2 Superimposition of initial structure with the
final snapshot obtained from MD simulation studies.
Differences between the final snapshots of (A) IkBa (yellow), (B)

IkBb (aquamarine), (C) IkBe (sky blue), (D) Bcl-3 (khaki), (E)

IkBNS (orchid) and (F) IkBf (light green) and their respective

initial structures (salmon). Variations are mainly observed within

the residue-joining ANK repeats and also between ANK repeats,

which are represented as dots and asterisks, respectively.

(TIF)

Figure S3 Benchmark of docking programs using
known crystal structure complexes. The p50/p65 hetero-

and p65/p65 homodimers, represented as ribbon diagrams, are

shown in blue and green as well as pink and violet, respectively.

The native IkB protein poses are red colored, and the IkB protein

poses predicted by the docking programs are in yellow (ZDOCK)

and dark blue (GRAMM-X), respectively. (A) Representation of

the IkBa-p50/p65 complex and (B) IkBb-p65/p65 homodimer

complex.

(TIF)

Figure S4 Molecular models of ARD domains. Crystal

structures of the ARD domains of IkBa (A), IkBb (B) and Bcl-3 (C)

are colored in yellow, aquamarine and khaki, respectively.

Homology models of the ARD domains of IkBe (D), IkBNS (E)

and IkBf (F) are colored in sky blue, orchid and light green,

respectively. The positions of the flexible residues determined by

the molecular dynamic simulations are highlighted in red.

(TIF)

Tables S1 (A) IkBe-p50/p65 heterodimer. (B) IkBNS-p50/p50

homodimer. (C) Bcl3-p50/p50 homodimer.

(DOC)
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