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Deep-Learning Models Trained With Healthy 
Chronological and Greulich-Pyle Ages as Labels
Pyeong Hwa Kim1, Hee Mang Yoon1, Jeong Rye Kim2, Jae-Yeon Hwang3, Jin-Ho Choi4, Jisun Hwang5, 
Jaewon Lee6, Jinkyeong Sung6, Kyu-Hwan Jung6, Byeonguk Bae6, Ah Young Jung1, Young Ah Cho1, 
Woo Hyun Shim1,7, Boram Bak8, Jin Seong Lee1

1Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea 
2Department of Radiology, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Republic of Korea 
3Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, 
Pusan National University School of Medicine, Yangsan, Republic of Korea 
4Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea 
5Department of Radiology, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea 
6VUNO Inc., Seoul, Republic of Korea 
7Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College 
of Medicine, Seoul, Republic of Korea  
8University of Ulsan Foundation for Industry Cooperation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

Objective: To develop a deep-learning-based bone age prediction model optimized for Korean children and adolescents and 
evaluate its feasibility by comparing it with a Greulich-Pyle-based deep-learning model.
Materials and Methods: A convolutional neural network was trained to predict age according to the bone development 
shown on a hand radiograph (bone age) using 21036 hand radiographs of Korean children and adolescents without known 
bone development-affecting diseases/conditions obtained between 1998 and 2019 (median age [interquartile range {IQR}], 
9 [7–12] years; male:female, 11794:9242) and their chronological ages as labels (Korean model). We constructed 2 separate 
external datasets consisting of Korean children and adolescents with healthy bone development (Institution 1: n = 343; 
median age [IQR], 10 [4–15] years; male: female, 183:160; Institution 2: n = 321; median age [IQR], 9 [5–14] years; male: 
female, 164:157) to test the model performance. The mean absolute error (MAE), root mean square error (RMSE), and 
proportions of bone age predictions within 6, 12, 18, and 24 months of the reference age (chronological age) were compared 
between the Korean model and a commercial model (VUNO Med-BoneAge version 1.1; VUNO) trained with Greulich-Pyle-based 
age as the label (GP-based model). 
Results: Compared with the GP-based model, the Korean model showed a lower RMSE (11.2 vs. 13.8 months; P = 0.004) and 
MAE (8.2 vs. 10.5 months; P = 0.002), a higher proportion of bone age predictions within 18 months of chronological age 
(88.3% vs. 82.2%; P = 0.031) for Institution 1, and a lower MAE (9.5 vs. 11.0 months; P = 0.022) and higher proportion of 
bone age predictions within 6 months (44.5% vs. 36.4%; P = 0.044) for Institution 2.
Conclusion: The Korean model trained using the chronological ages of Korean children and adolescents without known bone 
development-affecting diseases/conditions as labels performed better in bone age assessment than the GP-based model in 
the Korean pediatric population. Further validation is required to confirm its accuracy.
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In this context, a deep-learning-based bone age 
prediction model focusing on the Korean pediatric 
population may offer a simple and reproducible bone age 
assessment optimized for the Korean pediatric population, 
reflecting relevant ethnic and environmental factors. 
Therefore, we developed a deep-learning-based bone age 
prediction model using hand and wrist radiographs obtained 
from healthy Korean children and adolescents with their 
chronological age as the label and subsequently evaluated 
its feasibility by comparing it with a GP-based deep-
learning bone age assessment system. 

MATERIALS AND METHODS

This retrospective study was conducted in accordance with 
the checklist for Artificial Intelligence in Medical Imaging 
[19]. Approval was obtained from the Institutional Review 
Board of each participating institution. The requirement for 
informed patient consent was waived by the institutional 
review boards because of the retrospective nature of the 
study.

Study Design and Datasets
As we can assume that bone age is the same as 

chronological age in individuals whose bone development 
is normal, our strategy for training a model (Korean model) 
was to use hand and wrist radiographs from Korean pediatric 
individuals with normal bone development as input data and 
their chronological ages as labels. Therefore, we collected 
left hand and wrist radiographs of Korean children and 
adolescents who showed normal bone development without 
any genetic, endocrinologic, or other chronic diseases. A 
systematic computerized search of the database of Asan 
Medical Center was performed to identify all left hand 
and wrist radiographs of eligible pediatric patients (aged 
< 20 years) obtained between 1998 and 2019. Radiographs 
of patients meeting any of the following criteria were 
excluded: 1) confirmed precocious puberty (testis ≥ 4 mL 
before the age of 9 years in males; Tanner 2 or higher stage 
secondary sexual characteristics before the age of 8 years in 
females), 2) confirmed delayed puberty (absent secondary 
sexual characters in males aged ≥ 14 years or females aged 
≥ 13 years), 3) abnormal growth rate (< 4–6 cm/year) in 
the prepubertal period [20], 4) abnormally short stature 
compared with the normal Korean pediatric population 
of the same age (height less than the third percentile for 
age and sex according to the Korean population-based 

See the invited Editorial by Cheon et al., in 
volume 24(11) on page 1059 to 1060, https://doi.
org/10.3348/kjr.2023.0895.

INTRODUCTION

Bone age, generally evaluated using hand and wrist 
radiographs, is a representative index that reflects skeletal 
maturation in children and adolescents. Growth disorders 
should be considered when there is a considerable 
discrepancy between chronological and observed bone 
ages (discrepancy > 2 standard deviations [SDs]) [1,2]. 
Determining bone age is also useful for making surgical 
decisions in orthopedics [3] and forensics [4]. Among 
the methods available for bone age determination, the 
atlas-based Greulich-Pyle (GP) method is one of the most 
widely used methods [5]. However, there is an unresolved 
issue with the conventional GP method that needs to 
be addressed: no standardized protocol is available for 
determining how different bones should be weighted 
when assessing bone age, leading to unignorable inter-
institutional and inter- and intraobserver variability [6-8]. 
Therefore, an automated GP-based bone age prediction 
system was introduced, which demonstrated high accuracy, 
reproducibility, and time efficiency [9-12]. 

However, whether this method applies to the current 
Korean pediatric population remains questionable, as the 
GP method was derived from a mostly white pediatric 
population at the upper socioeconomic level almost a 
century ago [5]. A meta-analysis demonstrated significant 
differences between GP-based bone and chronological 
ages in Asian boys [13]. Furthermore, Zhang et al. [14] 
showed advanced bone age in Asian boys (11–15 years) 
and girls (10–13 years) compared with Caucasians when 
bone age was based on the GP method. Ontell et al. [15] 
also reported delayed bone age in the preadolescent period 
and advanced bone age in the adolescent period in Asian 
boys. A previous study also affirmed that the contemporary 
Korean pediatric population showed different rates of 
skeletal maturation compared with GP-based bone age 
estimates [16]. Therefore, a standard bone age chart based 
on the Tanner–Whitehouse 2 (TW2)-20 score using 3407 
radiographs of Korean children was introduced in 1996 [17]. 
However, the relatively small sample size and considerable 
time required for assessment based on the TW2 method [18] 
limits its wide application in clinical practice. 

https://doi.org/10.3348/kjr.2023.0895
https://doi.org/10.3348/kjr.2023.0895


1153

Deep-learning-based Korean Bone Age Assessment Model

https://doi.org/10.3348/kjr.2023.0092kjronline.org

reference) [21], 5) any confirmed congenital anomalies, 
6) underlying chronic disease potentially affecting growth, 
7) use of medications affecting bone growth or metabolism 
(recombinant human growth hormone therapy or 
corticosteroids), 8) evident soft tissue or bone tumors noted 
on the radiographs, 9) fractures with/without dislocations 
noted on the radiographs, 10) amputation or excision state, 
and 11) radiographs with poor image quality or wrong patient 
positioning. If the relevant information was unavailable 
(growth rate or height), the radiograph was considered normal 
because little medical attention was required in such cases. 
Images and clinical charts were initially screened by one 
researcher (Boram Bak with 2 years of clinical experience 
as a radiology technician). During screening, the inclusion/
exclusion of complex cases was confirmed daily by an 
experienced pediatric radiologist (H.M.Y., with 9 years of 
experience in pediatric radiology). Additionally, randomly 
selected radiographs were double-checked by a pediatric 
radiologist (P.H.K., with 2 years of experience in pediatric 
radiology). The exclusion was confirmed by consensus 
between the two radiologists, considering the extracted 
clinical information and image quality. 

Model Development: Preprocessing
Several preprocessing steps were performed to achieve 

consistency and reduce the complexity of the input data. 
These steps included the use of a background removal 
network and transformation network intended to locate 
the hand in a consistent position [22]. To train the 
preprocessing models, all labels were manually annotated 
using the Radiological Society of North America hand 
bone age dataset [23] by an experienced musculoskeletal 
radiologist (J.S., with 7 years of experience in 
musculoskeletal radiology). The images were first resized to 
a uniform size of 512 x 512 pixels, and background removal 
was performed on the downsampled image. Finally, a series 
of transformations (translation and rotation) was performed 
to make the scale and position of the hands constant across 
all the radiographic images. Both hand segmentation and 
transformation networks used a high-resolution network for 
the network architecture [24]. The preprocessing steps were 
conducted by an experienced computer programmer (J.L., 
with 3 years of experience in programming). 

Model Development: Convolutional Neural Network
The ResNet-50 deep convolutional neural network model 

[25] was trained to estimate the chronological age at 

1-month intervals (Fig. 1). After each convolutional layer, 
a rectified linear unit activation function was employed 
for nonlinearity, and batch normalization was performed to 
avoid overfitting. Finally, the flattened feature vectors from 
the global average pooling layer were fed into a final fully 
connected layer with 256 nodes. Each node of the last fully 
connected layer corresponded to a patient’s chronological 
age at 1-month intervals. 

To accelerate model convergence and achieve a better 
estimation performance, the model parameters were 
pretrained on ImageNet [26], except for the last fully 
connected layer, whose biases were set to zero. All weights 
were randomly initialized within a range of -0.5 to 0.5. 
Data augmentation was performed with random rotation, 
scaling, and horizontal flipping. The model was trained by 
minimizing the DLDLv2 objective function [27] using an 
Adam optimizer. The initial learning rate was 1e-3, which 
was dropped to 1e-5 over 300 training epochs. The model 
was trained using PyTorch 1.7 (Linux; https://pytorch.
org) in Python 3.6. The performance of the developed 
Korean model was internally validated using four-fold cross-
validation.

External Validation Dataset
For external validation, two separate datasets were 

obtained from the Pusan National University Yangsan 
Hospital (Institution 1; from January 2008 to November 
2022) and Dankook University Hospital (Institution 2; 
from January 2005 to November 2022). These consisted 
of left hand and wrist radiographs obtained in the clinical 
setting of trauma in Korean children and adolescents 
without known underlying diseases or conditions affecting 
bone development. Similarly, if relevant information was 
unavailable (growth rate or height), the radiograph was 
considered normal because little medical attention was 
required in such cases. Radiographs were included only 
when two radiologists determined them to be satisfactory 
for bone age assessment (H.M.Y. and P.H.K., with 9 and 2 
years of experience in pediatric radiology, respectively). 

Statistical Analysis
The developed Korean model was externally validated 

using two separate datasets: one from Institution 1 and 
the other from Institution 2. The reference standard was 
the chronological age of the participants. For comparison, 
a GP-based automated bone age prediction model 
(VUNO Med-BoneAge version 1.1; VUNO) was applied 

https://pytorch.org
https://pytorch.org
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to the test datasets. VUNO Med-BoneAge (VUNO) is a 
commercially available automated bone age prediction 
system trained using left-hand radiographs of a Korean 

pediatric population, with GP-based bone ages as labels. 
The performance of each system was graphically estimated 
using a scatter plot. Notably, for statistical analysis, the 

Fig. 1. Flow diagram of patient selection and dataset organization with a schematic illustration of the development of the deep 
convolutional neural network model (Korean model). Among the 62113 radiographs identified through the computerized search, 21036 
were used for model development. A convolutional neural network was trained to predict choronologic age (reference standard) at 
1-month intervals. Two separate external datasets consisting of Korean children and adolescents with healthy bone development were 
used to test the model performance. HRNet = high-resolution net 
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bone age prediction of the GP-based model was calculated 
by summing all bone ages multiplied by their predicted 
probabilities (the VUNO score). The mean absolute error 
(MAE) and root mean square error (RMSE) were also 
calculated and compared between the Korean- and GP-
based models using generalized estimating equations to 
account for patient clustering effects. The proportions of 
bone age predictions within 6, 12, 18, and 24 months of 
chronological age were calculated and compared between 
the Korean and GP-based models using chi-square tests. 
Additionally, Bland–Altman plot analysis was performed 
between the chronological age and ages predicted by the 
Korean and GP-based models to identify any systemic 
differences between the measurements. The presence of 
systemic trend differences between chronological and 
predicted ages, that is, age-dependent bias, was assessed 
using univariable linear regression analysis based on the 
Bland–Altman plot.

Because the most probable bone age and not the VUNO 
score (calculated bone age weighted by probabilities) is 
generally used in clinical practice, its accuracy should 
also be evaluated. However, directly comparing the most 
probable GP-based bone age with bone age predicted by 
the Korean model was inappropriate because the Korean 
model was presented in months. Therefore, to ensure the 
comparability between the two models, we also obtained 
the GP-based bone age that was most similar to bone age 
predicted by the Korean model. We subsequently compared 
the most probable bone age by the GP model with the GP-
based bone age that was most similar to the bone age 
predicted by the Korean model.

Given that the GP-based model has shown suboptimal 
predictive performance for ages < 2 years [28] and growth 
reaches a plateau around the age of 14 years in females and 
16 years in males [21], we performed a subgroup analysis 
restricted to ages of 2–16 years for males and 2–14 years 
for females. MAE, RMSE, and Bland–Altman plot analyses 
were similarly performed for this subgroup. To compare the 
magnitude of age-dependent bias between the two models, 
the coefficients of linear regression model in the Bland–
Altman plot were compared by testing the interaction effect 
of the bone age prediction model.

Generalized estimating equations were performed using 
IBM SPSS Statistics for Windows (version 23.0; IBM Corp.), 
whereas other statistical analyses were performed using 
R software (version 3.6.3.; R Foundation for Statistical 
Computing). Differences were considered statistically 

significant at P < 0.05.

RESULTS

Dataset Characteristics
Among the 62113 radiographs identified through the 

computerized search, 21036 (median age [interquartile 
range {IQR}], 9 [7–12] years; male: female, 11794:9242) 
were used for model development (Fig. 1). The reasons 
for the radiograph acquisitions were as follows: growth 
evaluation (n = 16984); trauma (n = 3056); congenital 
anomaly work-up (n = 604); pain/swelling (n = 330); and 
soft tissue, bone mass, or tumor evaluation (n = 62).

For external validation, 343 radiographs from Institution 1 
(median age [IQR], 10 [4–15] years; male: female, 183:160) 
and 321 radiographs from Institution 2 (median age [IQR], 
9 [5–14] years; male: female, 164:157) were used. The age 
distributions of the datasets are shown in Figure 2. 

Internal Validation of the Korean Model
The RMSE and MAE of the predicted bone ages (in 

comparison with chronological ages) were 8.4 and 6.1 
months, respectively. The proportions of participants with 
absolute differences ≤ 6, 12, 18, and 24 months were 60.7% 
(12770 of 21036), 87.5% (18408 of 21036), 96.3% (20266 
of 21036), and 98.8% (20774 of 21036), respectively. 

External Validation
The results of the concordance analysis between the 

chronological and bone ages predicted by the GP-based and 
Korean models are summarized in Table 1 and Figure 3. For 
the data from Institution 1, both the RMSE and MAE were 
significantly lower in the Korean model than in the GP-based 
model (RMSE, 11.2 vs. 13.8 months, P = 0.004; MAE, 8.2 
vs. 10.5 months, P = 0.002). Additionally, the proportion of 
participants with an absolute difference ≤ 18 months was 
also higher in the Korean model (88.3% vs. 82.2%; P = 
0.031). For Institution 2, MAE was significantly lower in 
the Korean model than in the GP-based model (9.5 vs. 11.0 
months; P = 0.022), and the proportion of participants with 
an absolute difference ≤ 6 months was also higher in the 
Korean model (44.5% vs. 36.4%; P = 0.044).

The Bland–Altman results are summarized in Table 1 and 
Figure 3. The Korean model showed a trend of underestimating 
age as chronological age increased (Institution 1: slope, 
-0.067; P < 0.001; Institution 2: slope, -0.056; P < 0.001). 

The results comparing the most probable bone age by the 
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Fig. 2. Histograms showing the chronological age distributions in 
the datasets for model development (A) and external validation 
(B for Institution 1 and C for Institution 2). Datasets for model 
development included 21036 radiographs, with a median age of 9 
years (interquartile range, 7–12 years; male: female, 11794:9242). 
External validation dataset from Institution 1 included 343 
radiographs, with a median age of 10 years (interquartile range, 
4–15 years; male: female, 183:160), and dataset from Institution 
2 included 321 radiographs, with a median age of 9 years 
(interquartile range, 5–14 years; male: female, 164:157). 

Table 1. Concordance and Bland-Altman analysis between chronological age and bone age predicted by the Greulich-Pyle-based model 
and Korean model

Parameters
Institution 1 Institution 2

GP Korean P GP Korean P
RMSE, month 13.8 11.2 0.004 14.3 13.1 0.250
MAE, month 10.5   8.2 0.002 11.0   9.5 0.022
Percentage of subjects with absolute difference‡

≤ 6 months 43.1 (148/343) 47.2 (162/343) 0.319 36.4 (117/321) 44.5 (143/321) 0.044
≤ 12 months 67.6 (232/343) 74.1 (254/343) 0.078 66.0 (212/321) 71.7 (230/321) 0.147
≤ 18 months 82.2 (282/343) 88.3 (303/343) 0.031 81.3 (261/321) 85.7 (275/321) 0.167
≤ 24 months 92.1 (316/343) 93.6 (321/343) 0.553 90.3 (290/321) 91.3 (293/321) 0.785

Bland-Altman parameters*
Slope 0.016 -0.067 - 0.012 -0.056 -
Intercept, month -1.8 7.0 - -1.3 6.1 -
Bias, month -0.02 -0.47 - 0.14 -0.24 -
Standard deviation, month 14.0 11.8 - 14.2 12.5 -
95% limits of agreement, month -27.5 to 27.5 -23.5 to 22.6 - -27.7 to 28.0 -24.7 to 24.2 -
P† 0.140 < 0.001 - 0.126 < 0.001 -

*Bland-Altman plot analysis was performed between chronologic age as the reference and the ages predicted by the GP-based (VUNO 
score) and Korean models, †P-value was calculated using univariable linear regression analysis based on the Bland-Altman plot, with 
the independent variable being the mean value of the chronologic age and predicted bone age, and the dependent variable being the 
difference between the chronologic age and predicted bone age, ‡Numbers in parentheses indicate numerators and denominators. 
GP = Greulich-Pyle, RMSE = root mean square error, MAE = mean absolute error 

GP model and the GP-based bone age most similar to the 
bone age predicted by the Korean model are presented in 
Table 2. However, both the RMSE and MAE in Institution 1 

and the MAE in Institution 2 were significantly lower than 
those in the Korean model. Additionally, the proportions of 
participants with an absolute difference ≤ 12 and 18 months 
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Fig. 3. Bivariate scatterplots showing associations between reference (chronological age) and bone ages predicted by the Greulich-Pyle 
(GP) (red dots) and Korean (blue dots) models, and Bland–Altman plots showing the difference between chronological and predicted 
bone ages in datasets from Institution 1 (A) and Institution 2 (B). In the bivariate scatter plot, perfect concordance is represented by 
a 45° line (black line). In the Bland–Altman plot, the top and bottom dashed lines denote 1.96 standard deviations above and below 
the mean difference, respectively. The dotted lines represent 95% confidence intervals for these three values. The black line at 0 is 
the reference representing the situation with no bias (mean or slope) existing. The blue line represents the estimated bias from 0 with 
respect to age, with 95% confidence intervals (gray shaded area). Note that the root mean square error (RMSE) of the Korean model is 
significantly lower for Institution 1 (P = 0.004), and the mean absolute error (MAE) of the Korean model is significantly lower for both 
institutions (Institution 1, P = 0.002; Institution 2, P = 0.022). 
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in Institution 1 and those with an absolute difference ≤ 6 
and 12 months in institution 2 were significantly higher 
than those in the Korean model. 

Subgroup Analysis
The results of subgroup analyses restricted to ages 

2–16 years for males and 2–14 years for females are 
summarized in Table 3 and Figure 4. The GP-based model 
tended to underestimate the bone age before the age of 
8 years and overestimate the bone age after the age of 8 
years (Institution 1: slope, 0.15; P < 0.001; Institution 2: 
slope, 0.15; P < 0.001). Contrastingly, the Korean model 
showed no significant age-dependent bias for Institution 
1 (P = 0.266), and the slope in the Bland–Altman plot 
was significantly lower in the Korean model (slope; 0.15 
[GP-based model] vs. −0.017 [Korean model]; P < 0.001). 
Although the Korean model showed a significant age-
dependent bias for Institution 2 (P = 0.048), the slope in 
the Bland–Altman plot was significantly lower in the Korean 
model (slope; 0.15 [GP-based model] vs. 0.03 [Korean 
model]; P < 0.001). Additionally, in the Korean model, RMSE 
and MAE were lower, and the proportions of participants 
with absolute differences ≤ 6, 12, and 18 months were 
higher than those in the GP-based model. 

DISCUSSION

In this study, we developed a deep-learning model for 
predicting bone age (termed the “Korean model”) in a 
contemporary healthy Korean pediatric population using 
chronological age of the participants as the label. Compared 
with the GP-based model, the Korean model showed better 
prediction performance. Superior accuracy was also observed 
even when comparing the most probable bone age and 
in the subgroup analysis restricted to ages of 2–16 years 
(boys) and 2–14 years (girls). Furthermore, the magnitude 
of age-dependent bias observed in the GP-based model was 
significantly reduced in the Korean model. Therefore, our 
newly developed Korean model appears to be a feasible 
method for assessing normal skeletal development in the 
Korean pediatric population.

Our application of the GP-based bone age prediction to 
approximately 20000 radiographs from a healthy Korean 
pediatric population confirmed the presence of a systemic 
bias in this population. In other words, skeletal maturation 
in contemporary Korean children and adolescents starts 
later and ends earlier than that in Caucasians. Zhang et al. 
[14] reported that bone age estimated using the GP method 
was more advanced in Asian boys (11–15 years) and girls 

Table 2. Concordance and Bland-Altman analysis between chronologic age and the most probable/similar bone age by the Greulich-Pyle-
based model and Korean model

Parameters
Institution 1 Institution 2

GP Korean P GP Korean P
RMSE, month 14.0 11.7 0.014 14.4 13.5 0.270
MAE, month 10.6   8.6 0.005 11.1   9.8 0.017
Percentage of subjects with absolute difference‡

≤ 6 months 41.4 (142/343) 47.5 (163/343) 0.124 35.8 (115/321) 48.3 (155/321) 0.002
≤ 12 months 65.3 (224/343) 74.3 (255/343) 0.013 62.3 (200/321) 72.3 (232/321) 0.009
≤ 18 months 80.2 (275/343) 87.5 (300/343) 0.013 81.9 (263/321) 85.4 (274/321) 0.286
≤ 24 months 91.8 (315/343) 95.0 (326/343) 0.123 90.3 (290/321) 91.9 (295/321) 0.579

Bland-Altman parameters*
Slope 0.065 -0.075 - -0.0007 -0.018 -
Intercept, month -5.5 7.4 - -0.0062 2.9 -
Bias, month 1.6 -1.4 - -0.09 0.932 -
Standard deviation, month 13.7 12.8 - 13.6 14.6 -
95% limits of agreement, month -25.3 to 28.4 -26.5 to 23.7 - -26.8 to 26.7 -27.7 to 29.5 -
P† < 0.001 < 0.001 - 0.960 0.138 -

*Bland-Altman plot analysis was performed between chronologic age as the reference and the ages predicted by the GP-based (the most 
probable GP-based bone age) and Korean models (GP-based bone age most similar to the predicted bone age by Korean model), †P-value 
was calculated using univariable linear regression analysis based on the Bland-Altman plot, with the independent variable being the 
mean value of the chronologic age and predicted bone age, and the dependent variable being the difference between the chronologic age 
and predicted bone age, ‡Numbers in parentheses indicate numerators and denominators.
GP = Greulich-Pyle, RMSE = root mean square error, MAE = mean absolute error
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(10–13 years) than that in Caucasians. Ontell et al. [15] 
also reported delayed bone age in the preadolescent 
period and advanced bone age in the adolescent period in 
Asian boys. This systemic bias was reproduced in our data 
(underestimation of bone age before the age of 8 years 
and overestimation of bone age after the age of 8 years). 
Considering the accuracy of deep-learning-based bone 
age assessment systems [9,29], this trend is probably not 
derived from the performance of the GP-based model but 
rather from different genetic factors, diet, and/or nutritional 
intake between the general Korean pediatric population and 
white pediatric population of an upper socioeconomic level 
(as was used to develop the GP method). 

It should be emphasized that this systemic bias may 
affect treatment decisions. In general, delayed or advanced 
bone age is defined as the difference between bone age 
and chronological age > 2 SD of the mean [30]. This can 
be roughly interpreted as a difference between bone 
and chronological ages of greater than approximately 
12 months between 2 and 4 years of chronological age, 
greater than 18 months between 4 and 12 years, and greater 
than 24 months after the age of 12 years [31]. Indeed, the 
proportions of participants with absolute differences ≤ 18 
months in Institution 1 and those with absolute differences 
≤ 6 months in Institution 2 were significantly higher in the 
Korean model than in the GP-based model. Furthermore, 

in the subgroup analysis restricted to participants aged 
2–16 years for males and 2–14 years for females, the 
proportions of participants with absolute differences ≤ 6, 
12, and 18 months were higher in the Korean model in both 
institutions. Considering the systemic bias in age prediction 
for the GP-based model, our deep-learning-based Korean 
model demonstrated the potential to minimize this age-
dependent bias and might reduce inappropriate diagnosis 
and treatment. Although a statistically significant trend 
difference was noted in the Korean model when analyzing 
the whole study population (slope; Institution 1, -0.067; 
Institution 2, -0.056; both P < 0.001), this might be due 
to inevitable discrepancies between chronological and 
predicted bone ages after completion of bone development 
in the older age group; this would be supported by the fact 
that this systemic bias was minimized after exclusion of 
older adolescents. 

This study had several limitations. First, the training 
dataset derived from a single institution might not reflect 
the general Korean pediatric population. Second, potentially 
eligible participants and radiographs were initially reviewed 
by a non-medical doctor researcher in a retrospective 
manner. Third, because the unavailable relevant information 
was considered normal (puberty, height, and growth rate), 
some included participants might have had undescribed 
endocrine problems. Fourth, the number of infants, 

Table 3. Results of subgroup analysis restricted to ages 2–16 years for males and 2–14 years for females

Parameters
Institution 1 Institution 2

GP Korean P GP Korean P
RMSE, month 12.2 9.8 < 0.001 10.7 10.1 < 0.001
MAE, month 10.0 7.4 < 0.001   8.1   7.8 < 0.001
Percentage of subjects with absolute difference‡

≤ 6 months 36.1 (75/208) 51.0 (106/208) 0.003 32.0 (70/219) 48.4 (106/219) 0.001
≤ 12 months 62.5 (130/208) 79.3 (165/208) < 0.001 65.8 (144/219) 76.7 (168/219) 0.015
≤ 18 months 77.9 (162/208) 92.8 (193/208) < 0.001 81.7 (179/219) 90.4 (198/219) 0.013
≤ 24 months 90.9 (189/208) 97.1 (202/208) 0.013 91.8 (201/219) 95.9 (210/219) 0.112

Bland-Altman parameters*
Slope 0.15 -0.017 - 0.15 0.03 -
Intercept, month -15 3 - -14 -0.77 -
Bias, month 0.856 1.248 - 2.164 2.344 -
Standard deviation, month 15.137 9.804 - 13.849 10.477 -
95% limits of agreement, month -28.8 to 30.5 -18.0 to 20.5 - -25.0 to 29.3 -18.2 to 22.9 -
P† < 0.001 0.266 - < 0.001 0.048 -

*Bland-Altman plot analysis was performed between chronologic age as the reference and the ages predicted by the GP-based (VUNO 
score) and Korean models, †P-value was calculated using univariable linear regression analysis based on the Bland-Altman plot, with 
the independent variable being the mean value of the chronologic age and predicted bone age, and the dependent variable being the 
difference between the chronologic age and predicted bone age, ‡Numbers in parentheses indicate numerators and denominators.
GP = Greulich-Pyle, RMSE = root mean square error, MAE = mean absolute error 
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Fig. 4. Bivariate scatterplots showing associations between reference (chronological age) and bone ages predicted by the Greulich-Pyle 
(GP)-based (red dots) and Korean (blue dots) models for males aged 2–16 years and females aged 2–14 years. Bland–Altman plots show 
the difference between chronological and predicted bone ages in data from Institution 1 (A) and Institution 2 (B). In the bivariate scatter 
plot, perfect concordance is represented by a 45° line (black line). In the Bland–Altman plot, the top and bottom dashed lines denote 1.96 
standard deviations above and below the mean difference, respectively. The dotted lines represent 95% confidence intervals for these three 
values. The black line at 0 is the reference representing the situation with no bias (mean or slope) existing. The blue line represents the 
estimated bias from 0 with respect to age, with 95% confidence intervals (gray shaded area). Note that the magnitude of age-dependent 
bias (underestimation of bone age before the age of 8 years and overestimation of it after the age of 8 years) is reduced with the Korean 
model than that with the GP model for Institution 1 (slope, -0.017 [Korean] vs. 0.15 [GP model]; P < 0.001) and Institution 2 (slope, 0.03 
[Korean] vs. 0.15 [GP model]; P < 0.001). RMSE = root mean square error, MAE = mean absolute error
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toddlers, and older adolescents in the training set was 
relatively small compared with the number of participants 
aged approximately 10 years. Therefore, the model might 
not be optimized for these age groups. Indeed, for both 
the internal and external validation sets, the bone age 
predicted by the Korean model showed a wide dispersion 
from the chronological age. Therefore, it is necessary 
to collect additional training datasets containing more 
infants, toddlers, and older adolescents for future model 
modifications. Fifth, although chronological age was used 
as the label, skeletal maturation can vary within the same 
chronological age [32]. Sixth, the RSME of our model was 
larger than 6 months, which is generally considered the 
acceptable range for an accurate bone age assessment tool. 
This should be improved by further modifications. Lastly, 
we did not develop a bone age atlas based on the newly 
developed Korean model, which could simply be used as a 
reference in clinical practice. 

In conclusion, a newly developed deep-learning-based 
Korean bone age assessment model trained using the 
chronological ages of Korean children and adolescents 
without known bone development-affecting diseases/
conditions as labels showed better performance in bone age 
assessment than a GP-based model in the Korean pediatric 
population. Further validation is required to confirm the 
accuracy of this method. 
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