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Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous and prevalent subtype of aggressive non-Hodgkin
lymphoma that poses diagnostic and prognostic challenges, particularly in predicting drug responsiveness. In this
study, we used digital pathology and deep learning to predict responses to immunochemotherapy in patients
with DLBCL. We retrospectively collected 251 slide images from 216 DLBCL patients treated with rituximab,
cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), with their immunochemotherapy response
labels. The digital pathology images were processed using contrastive learning for feature extraction. A multi-
modal prediction model was developed by integrating clinical data and pathology image features. Knowledge
distillation was employed to mitigate overfitting on gigapixel histopathology images to create a model that
predicts responses based solely on pathology images. Based on the importance derived from the attention
mechanism of the model, we extracted histological features that were considered key textures associated with
drug responsiveness. The multi-modal prediction model achieved an impressive area under the ROC curve of
0.856, demonstrating significant associations with clinical variables such as Ann Arbor stage, International
Prognostic Index, and bulky disease. Survival analyses indicated their effectiveness in predicting relapse-free
survival. External validation using TCGA datasets supported the model’s ability to predict survival differ-
ences. Additionally, pathology-based predictions show promise as independent prognostic indicators.
Histopathological analysis identified centroblastic and immunoblastic features to be associated with treat-
ment response, aligning with previous morphological classifications and highlighting the objectivity and
reproducibility of artificial intelligence-based diagnosis. This study introduces a novel approach that com-
bines digital pathology and clinical data to predict the response to immunochemotherapy in patients with
DLBCL. This model shows great promise as a diagnostic and prognostic tool for clinical management of
DLBCL. Further research and genomic data integration hold the potential to enhance its impact on clinical
practice, ultimately improving patient outcomes.
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most
common subtype of aggressive non-Hodgkin lymphoma.
In total, 60% of patients could be cured with rituximab,
cyclophosphamide, doxorubicin, vincristine, and predni-
sone (R-CHOP); however, the remaining 40% of patients
with chemorefractory disease eventually relapse and have
a dismal prognosis [1]. DLBCL poses a unique diagnos-
tic challenge due to its inherent clinical and pathological
heterogeneity. This heterogeneity translates into variable
clinical outcomes, emphasising the importance of precise
diagnostic strategies.
Histopathological examination based on tissue mor-

phology has been the bedrock of lymphoma diagnosis
for decades. The characteristic diffuse growth pattern
of large B cells effacing the lymph node architecture
serves as a pivotal diagnostic hallmark. Although mor-
phology provides essential clues, immunophenotyping
(usually by immunohistochemistry) is vital for a defini-
tive diagnosis. DLBCL cells typically express pan-B cell
markers, such as CD19, CD20, CD22, and CD79a.
DLBCL can be further sub-classified based on its cell of
origin into germinal centre B-cell-like (GCB) and acti-
vated B-cell-like (ABC) using markers such as CD10,
BCL6, and MUM1. This distinction has prognostic
implications and can be used to guide treatment
strategies. Some DLBCLs express other markers, such
as BCL2, MYC, and CD30. Double or triple expres-
sion of BCL2, MYC, and BCL6 has diagnostic and
prognostic implications. A MYC rearrangement con-
current with a rearrangement in BCL2, BCL6, or both
occurs in 4–8% of DLBCL cases. These cases are
referred to as double- or triple-hit lymphomas, which
are now classified as high-grade B-cell lymphomas
with MYC and BCL2 and/or BCL6 rearrangements and
are associated with poor clinical outcomes after
R-CHOP therapy [2–4].
DLBCL represents a highly heterogeneous diagnos-

tic category in terms of morphology, genetics, and
biological behaviour [5]. Several efforts have been
made to clarify this heterogeneity and to predict the
clinical outcomes of DLBCL. Standard prognostic
factors for DLBCL include the International
Prognostic Index (IPI), imaging with PET/CT, and
FISH for MYC and BCL2 rearrangement. The IPI
model can be employed to identify five factors to
predict survival: age >60, elevated serum lactate
dehydrogenase (LDH), Eastern Cooperative Oncology
Group performance status ≥2, Ann Arbor stage III or IV,
and number of involved extranodal sites ≥2. Four risk
groups were identified with predicted 5-year survival
rates of 73%, 51%, 43%, and 26%, respectively [6].

18-Fluorodeoxyglucose (18FDG)-PET/CT is a highly
sensitive method for detecting sites involved in DLBCL,
and baseline staging and response assessment using
PET/CT are significantly associated with survival [7,8].
Recently, gene expression profiling has been investigated
as a novel prognostic factor. Gene expression profil-
ing can classify cases into two distinct subtypes, the
GCB subtype and the ABC subtype, which are rele-
vant because targeted agents could be active in one
subtype [9,10]. Subsequently, molecular classification
based on targeted deep sequencing can further subdi-
vide DLBCL into MCD, N1, A53, BN2, ST2, and
EZB [11,12]. Despite these advances in the genetic
classification, the clinical heterogeneity of DLBCL has
not yet been fully defined.
Traditional diagnostic methods largely depend on

histopathological examination, which, while invaluable,
has inherent challenges, such as inter-observer variability
and the time-intensive nature of the evaluation. The
advent of digital pathology, which entails scanning
conventional glass slides to produce digital slides, has
revolutionised the landscape of pathological diagnostics.
This innovation not only facilitates remote consultations
and integrated multidisciplinary team reviews but also
paves the way for advanced computational analyses.
Concurrently, deep learning, a subset of machine
learning and artificial intelligence (AI), has burgeoned
in various fields of medicine, showing exceptional suc-
cess in image-recognition tasks. Marrying the high-
resolution, data-rich environment of digital pathology
with the robust pattern recognition capabilities of deep
learning models, particularly convolutional neural
networks (CNNs), promises a transformative shift in
haematopathology. Such synergy could potentially
offer enhanced diagnostic accuracy, consistency, and
speed, thereby addressing some of the limitations of
conventional methods. Previous studies using digital
pathology and AI reported promising results regarding
disease diagnosis, sub-classification, and outcome predic-
tion in other solid cancers [13–17]. For DLBCL, several
studies have utilised AI to improve the diagnostic accu-
racy and detection of MYC translocation [18–21].
However, no study has demonstrated the prog-
nostic implications of digital pathology using AI.
Furthermore, there are no models that predict respon-
siveness to chemotherapy or studies using digital
pathology to predict prognosis.
In this study, we investigated the histopathologic

features that predict the response to immunochem-
otherapy in patients with DLBCL using digital pathol-
ogy images at diagnosis with clinical data through
deep multiple instance learning (MIL). This new pre-
diction model, based on pathological findings, could
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provide a background for determining frontline treatment
strategies for DLBCL.

Methods

Study population and histopathology dataset
A total of 729 patients newly diagnosed with DLBCL
and treated with R-CHOP between 2005 and 2020 at
a single institution (Chonnam National University
Hwasun Hospital) were enrolled to develop and inter-
nally validate the DLBCL model. All patients received
3–8 cycles of R-CHOP, and patients with initial bulky
disease received consolidative involved-field radiother-
apy (IFRT) after immunochemotherapy. Clinical
and pathological data, including age, performance,
symptoms, LDH level, extranodal involvement, Ann
Arbor stage, spleen and bone marrow involvement in
baseline FDG-PET/CT, IPI score, revised IPI, bulky
disease, Bcl-2, IFRT, interim and end-of-treatment
PET/CT response, and total cycles of R-CHOP, were
collected from all available electronic medical records.
The tissue slides from 729 patients were reviewed.
As the slides before the year 2020 were old, the
staining had likely faded; we generated recut H&E-
stained slides from the paraffin blocks. During the
review process, slides with insufficient tumour cells
or poor stain quality for AI learning were excluded,
and one or a maximum of three histopathology
slides were selected for each of the 338 patients.
Without clinical information, whole slide images
(WSIs) of 338 patients were used for the feature
extractor model. Among the 338 patients, 102 whose
clinical information was missing and 20 for whom
the final response evaluation was not available were
excluded (Figure 1). The 251 WSIs from 216 patients
were divided using consecutive split validation into
training and validation sets comprising 80%
(200 patients) and a test set consisting of the
remaining 51 patients. The review was conducted by
two pathologists (MGN and YDC), and the selection
of slides for this study was based on their consensus.
The slides were scanned using a Leica-Aperio
GT450 Scanner with a �40 objective (0.25 μm per
pixel). Therefore, this study included 216 patients
with 251 H&E-stained WSIs and clinical informa-
tion, including cancer recurrence and survival rates.
The protocol for this retrospective study was
approved by the Ethics Committee of the
Institutional Review Board of Chonnam National
University Hwasun Hospital in accordance with the
Declaration of Helsinki (CNUHH-2023-225).

Assessment of treatment response and survival
The treatment response was assessed using 18F-PET/CT
according to the Lugano response criteria for non-
Hodgkin lymphoma [22]. Interim PET/CT scans
were obtained after 3–4 cycles of R-CHOP, and end-
of-treatment PET/CT was performed more than a
month after completing immunochemotherapy.
Interim and end-of-treatment PET/CT scans were com-
pared with baseline PET/CT scans and evaluated
according to visual assessment using Deauville criteria
on a five-point scale (DS): 1, no uptake; 2, uptake
≤mediastinum; 3, uptake >mediastinum but ≤liver; 4,
uptake moderately increased compared with the liver
uptake at any site; 5, markedly increased uptake com-
pared with the liver at any site and new sites and/or new
sites of disease. DS 1–3 were classified as complete
response (CR) during the final response assessment.
Progression-free survival was defined as the time from
diagnosis to disease progression or death from any cause,
and overall survival (OS) was defined as the time from
diagnosis to death from any cause. Non-responders were
defined as patients who did not achieve CR at the final
response assessment.

Self-supervised learning for patch feature
extraction
Self-supervised learning techniques utilise intrinsic
features of unlabelled data to obtain robust feature
representation [23–25]. Notably, contrastive learning
has emerged as a powerful method for analysing patho-
logical images, enabling the extraction of high-quality

Figure 1. Flowchart of case selection with inclusion and exclu-
sion criteria.
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features from small patches. Specifically, the DINO
method demonstrates exceptional ability to extract
detailed features relevant to various cancer types,
including cell morphology, tissue types, and histopath-
ological structures [26–28]. In our approach, we
extracted non-overlapping 448 � 448 pixel patches
from WSIs at �40 magnification, subsequently down-
scaled to 224 � 224 pixels using Lanczos filtering.
We then filtered out artifacts, such as non-tissue back-
ground and extraneous noise, by assessing the pixel
brightness. Additionally, we excluded areas where a
depth-first search identified that the contiguous region
spanned 25 or fewer tiles.
Using the DINO model built on contrastive learning,

we extracted the features from these patches. Our
backbone model employed ViT-S/8 [29], resulting in
feature dimensions of 384. Despite the abundance of
publicly available contrastive learning model weights,
their application to DLBCL remains challenging. This
is primarily because databases providing publicly
available histopathological images rarely offer data
on DLBCL subtypes. For instance, in The Cancer
Genome Atlas (TCGA) database [30], which provides
over 20,000 diagnostic slides, only 40 slides are avail-
able for the DLBCL subtype. As a result, we retrained
the DINO model on patches from our DLBCL slides
using the pre-trained model developed by Kang
et al [27]. Due to memory and GPU constraints, we
set the batch size to 512 and used a low initial learning
rate of 1.5e�6. We kept the other hyperparameters
consistent with those implemented in the DINO study
throughout our experiments. Finally, we visualised
DINO’s first component of feature representation
using Uniform Manifold Approximation and
Projection (UMAP) to preliminarily ascertain the qual-
ity of the features [31].

MIL for slide-level prediction
Recent algorithms based on MIL aim to predict the
label of a ‘bag’ composed of instances, making them
suitable methods for the classification of histopathol-
ogy images. We utilised a dual-stream multiple
instance learning network with attention-based pooling
to consolidate information across all patches [32]. We
utilised the attention score from attention-based pooling
as an indicator of patch importance, normalised these
values with min–max scaling, and visualised them as a
heatmap.
Gigapixel-based histopathological images contain

tens of thousands of patches. Given the relatively small
size of our dataset, comprising 251 WSIs, overfitting is
a significant concern in the model training process.

To address this issue, we first implemented a multi-modal
model that integrates histopathology images with clini-
cal data, anticipating that the predictive power of clin-
ical data would stabilise training and mitigate
overfitting on the training set. Consequently, 54 features
extracted from clinical data using unsupervised learning
with TabNet were combined with 384 features obtained
after attention-based pooling in the MIL model [33].
This composite feature set was then passed through the
final linear layer for output prediction. Subsequently, a
model solely based on pathology images was trained
using knowledge distillation techniques derived from
the multi-modal model. The 384 features from the MIL
model of the pathology image model were guided
by the multi-modal model’s pathology image feature
representation, using cosine similarity as a loss. For
predicting slide-level responses, we employed categori-
cal cross-entropy loss. The models were trained for
300 epochs with an initial learning rate of 0.0001,
which was decreased by half if the validation loss did
not decrease for 10 consecutive epochs. The model
demonstrating the lowest loss on the internal validation
set was selected.

External validation dataset
TCGA stands as a pivotal public database, boasting a
diverse array of clinical information, genomics, and
image data. The TCGA pathology images used
for external evaluation of the learned model were
reviewed by two pathologists (MGN and YDC). In
this investigation, we focused on histopathological
image data, specifically FFPE slides used for patient
diagnosis. Additionally, we integrated OS data
into our study parameters. All slides were uniformly
processed to yield patches with dimensions of
224 � 224 at a magnification of �20. Using a model
trained with the DINO architecture, we executed fea-
ture extraction. The TCGA dataset incorporates data
from 40 patients, including follow-up data, vital status
records, age, sex, and clinical stage. Among the
48 patients with DLBCL, 36 received R-CHOP treat-
ment and 4 received other treatments. Based on the
median values derived from our pathological model,
we stratified individuals into two distinct categories.
OS was subsequently assessed using Kaplan–Meier
plots and log-rank tests. In parallel, the Cox propor-
tional hazard model was employed to juxtapose the
clinical variables against pathology-driven predictions.
Of the 40 subjects, seven had documented mortality
incidents, and the duration of follow-up spanned up to
17.59 years.

4 of 12 JH Lee, G-Y Song et al

© 2024 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res 2024; 10: e12370



Statistical analysis
The model performance was assessed using receiver
operating characteristic (ROC) curves and the associated
area under the ROC curve (AUROC), with inter-model
AUROC differences determined using DeLong’s test.
Spearman’s rank correlation was used to analyse the
relationship between the predictive scores from the
model and clinical variables. Binary outcomes were sta-
tistically evaluated using the Wilcoxon rank-sum test
(Mann–Whitney U test). Survival outcomes were
visualised using the Kaplan–Meier method, with patients
stratified into two groups based on predicted value
medians for survival analyses, and the significance of
survival differences was assessed using the log-rank test.
The Cox proportional hazard model was used to inte-
grate clinical variables for survival analyses. All analyses
were conducted using R software version 4.1.3. p values
less than 0.05 were considered significant.

Results

Patients and dataset
The median age of the patients in the Chonnam
National University Hospital dataset used for model
training and internal validation was 66 years (range
20–87), and 95 patients (44.0%) were male (Table 1).
One hundred and fifteen patients (53.2%) were in the
Ann Arbor stage III–IV and 38 (17.6%) were classi-
fied as having a high-risk IPI. Regarding treatment,

26 patients with limited stage disease received 3–4 cycles
of R-CHOP with or without IFRT, 141 received 6 cycles
of R-CHOP, and 45 received 8 cycles of R-CHOP.
Consolidation IFRT was done in 12 patients. After
treatment, 186 patients (86.1%) were assessed as hav-
ing CR, 9 (4.2%) had partial response, 2 (0.9%) had
stable disease, and 19 (8.8%) had progressive disease.
The demographic and clinical characteristics of the
patients are listed in Table 1. The median age was
higher in the non-responder group, and the number of
patients with elevated LDH, >2 extranodal involvement,
and bulky masses was higher in the non-responder
group. As for the disease stage and IPI risk groups, more
patients were assigned to the advanced stage and higher
risk IPI in the non-responder group.

Development of slide-level drug response
prediction model
A workflow scheme for model development to predict
drug responses from histopathological images is shown
in Figure 2. For visual insights into our feature extraction
methodology, the DINO-derived features were dimen-
sionally reduced using UMAP (supplementary material,
Figure S1). Through heatmaps of each UMAP
component, a distinct demarcation between normal and
cancerous tissues was evident. Additionally, within the
cancerous regions, variations based on the unique texture
of cancer cells were discernible. Although most cancer
regions in DLBCL exhibited similar patterns, features
derived from the DINO approach effectively distinguished
the distinct textures of each cancer patch. In addition,

Table 1. Demographics and clinical features of responders versus non-responders
Variable Total (N = 216) Responder (n = 186) Non-responder (n = 30) p value

Age, median (range) 66 (20–87) 65 (20–83) 71 (39–87) 0.004
Male (%) 95 (44.0) 81 (43.5) 14 (46.7) 0.843
Elevated LDH (%) 131 (60.6) 105 (56.5) 26 (86.7) 0.002
PS ≥2 (%) 28 (13.0) 22 (11.8) 6 (20.0) 0.240
Beta-2 microglobulin 2,430.6 (348.0–17,871.0) 2,269.0 (348.0–17,871.0) 3,459.8 (1,957.0–9,007.0) <0.001
B-symptoms (+) 51 (23.6) 43 (23.1) 8 (26.7) 0.817
Extranodal involvement ≥2 (%) 48 (22.2) 35 (18.8) 13 (43.3) 0.005
Ann Arbor stage (%) 0.074
I 37 (17.1) 33 (17.7) 4 (13.3)
II 64 (29.6) 60 (32.3) 4 (13.3)
III 56 (25.9) 47 (25.3) 9 (30.0)
IV 59 (27.3) 46 (24.7) 13 (43.3)

BM involvement (%) 21 (9.7) 17 (9.1) 4 (13.3) 0.505
IPI (%) 0.001
Low 73 (33.8) 71 (38.2) 2 (6.7)
Low–intermediate 53 (24.5) 47 (25.3) 6 (20.0)
High–intermediate 52 (24.1) 41 (22.0) 11 (36.7)
High 38 (17.6) 27 (14.5) 11 (36.7)

Bulky mass (%) 13 (6.0) 8 (4.3) 5 (16.7) 0.021

BM, bone marrow; PS, performance status.
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our model, which leverages attention mechanisms, can
pinpoint patches that have a substantial impact on the
prediction of the presence or absence of a drug response.

Performance evaluation of the prediction model
The model trained solely on pathology yielded an
AUROC value of 0.744 (95% CI: 0.605–0.883), as
depicted in Figure 3A. This model’s sensitivity,
specificity, positive predictive value (PPV), and neg-
ative predictive value (NPV) based on its Youden’s
index are 63.4%, 90.0%, 96.3%, and 37.5%, respectively.
Additionally, the area under the precision-recall curve
(AUPRC) for this model is 0.935. The multi-modal
prediction model achieved an AUROC value of
0.856 (95% CI: 0.733–0.980). The sensitivity, specificity,
PPV, and NPV for this model, based on its Youden’s
index, were 90.2%, 70.0%, 92.5%, and 63.6%,
respectively. And the AUPRC for this model is 0.961.

Survival analysis using AI predictions
The Kaplan–Meier plot (Figure 3B) demonstrates
relapse-free survival (RFS) outcomes predicted by an
AI model trained solely on histopathology images.
Using the log-rank test for survival analysis, we
observed a significant difference in survival between
patient groups divided by the median AI prediction
value (p = 0.041). The multimodal model, which inte-
grates clinical variables, also significantly distin-
guished RFS outcomes, as indicated by a p value of
0.026 (Figure 3C).

External validation through survival analysis
in TCGA
For external validation using the TCGA dataset, we
observed a statistically significant survival difference
with a p value of 0.037 (Figure 3D). To assess the

Figure 2. Schematic representation of the workflow for predicting CR to chemotherapy using histopathology images. (A) Histopathology
image processing from patch generation to feature representation through contrastive learning. (B) Development of models to predict
drug response using combined histopathology images and clinical data or using histopathology images alone. The histopathology-only
model was trained via knowledge distillation from the multi-modal model, with an accompanying heatmap that underscores regions
influencing the response through the attention mechanism.
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prognostic significance of pathology-based prediction,
even when combined with clinical variables, we
conducted a Cox proportional hazards analysis
incorporating age, sex, and clinical stage. Although
the pathology-based prediction did not achieve sta-
tistical significance, it displayed the lowest p value
among all the clinical factors, accompanied by a pos-
itive coefficient (supplementary material, Table S1). Of
the seven recorded deaths, only one individual belonged

to the group anticipated to respond well to drug
treatment.

Drug response prediction and associated variables
We analysed clinical variables in relation to the pre-
dictions of the model that exclusively utilised histopa-
thology (Figure 4). The association between LDH
level and histopathology-based predictions was not

Figure 3. Performance of the model for drug response prediction and survival analysis. (A) ROC curves for drug response prediction by
the histopathology-based AI model and the multimodal AI model. (B) RFS analysis according to predictions from the histopathology-
based AI model. (C) RFS analysis conducted by the multi-modal model. (D) External validation of RFS using TCGA dataset.
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significant (p = 0.37). The p value for bulky disease
was borderline at 0.055. For Ann Arbor stage,
Spearman correlation analysis showed a ρ value of
�0.264, indicating a negative correlation with a
p value of 0.061. Similarly, the IPI risk exhibited a ρ
value of �0.289, suggesting a negative correlation
with a significant p value of 0.040.

Histological features related to drug response
Patches highlighted from the slides that were predicted
by the deep learning model to have a CR were
categorised based on their histological characteristics.
Our multiple instance model allowed us to retrieve the
most predictive patches from thousands of processed
patches. We investigated key histological determi-
nants by extracting the 4020 most predictive patches
(3040 for responders and 980 for non-responders)
from 216 WSIs using a prediction model and
reviewing them by expert pathologists (MGN and
YDC). Immunoblastic features and centroblastic fea-
tures were observed in patches that best predicted
responders, and anaplastic features and a clear cyto-
plasm were observed in patches that best predicted
non-responders (Figure 5A). Overall, these results
demonstrate that our multiple instance model can
detect histological patterns associated with chemother-
apy responsiveness and survival in patients with
DLBCL. We further created a heatmap distribution
of instances for each WSI and examined the overall
distribution of the predicted risk for each patch
(Figure 5B). We then investigated whether the histo-
logical characteristics of patches with a high contribu-
tion to responders or non-responders were distributed
within each WSI. In the responder WSI, the anaplastic
features or clear cytoplasmic features were distributed

as a high signal in the heatmap within the WSI, and in
the non-responder WSI, the immunoblastic feature or
centroblastic feature was distributed as a high signal in
the heatmap within the WSI.

Discussion

The objective of this research was to create a deep
learning model for predicting immunochemotherapy
responses in DLBCL based on H&E histopathology
images. Based on knowledge distillation, our model
could avoid overfitting to gigapixel histopathology
images to predict immunochemotherapy response.
To the best of our knowledge, this study is the first
attempt to predict drug responses in DLBCL using
histopathology.
This study addresses two significant challenges

compared with previous research on digital pathology
image analysis. First, while AI research has focused
primarily on automating tasks typically performed by
humans, such as tumour subtype classification and
identification of metastases, this study addresses the
highly demanding task of predicting immunochem-
otherapy response [32,34], which is not a task that can
typically be performed accurately by human experts.
We validated the performance of our model using both
internal and external datasets, supported by a survival
analysis. Second, WSIs of the breast, lung, prostate,
and other tumour types typically studied contain
structural/tissue architectural features within the slides,
whereas DLBCL lacks substantial structural/architectural
characteristics [18,19]. Given the similarity in struc-
tural patterns across most DLBCL patches, a feature
extractor with exceptional performance is required.

Figure 4. Associations between histopathology-based model predictions and clinical variables.
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Previous studies have employed features extracted
from CNN models trained on ImageNet data, such as
ResNet and EfficientNet. However, these models may
not yield favourable results for DLBCL patches
because of their highly similar structural patterns.
To achieve a robust performance and mitigate

overfitting, we implemented a model that utilised con-
trastive learning and knowledge distillation.
Several proven clinical factors for predicting prog-

nosis in DLBCL exist, such as the IPI, Ann Arbor
stage, performance status, age, bulky disease, and
serum LDH levels. In the present study, the prediction

Figure 5. Visual representation of the model predicting drug response. (A) Classification of principal patches based on histological
characteristics in relation to drug response. (B) Comprehensive heatmap of the slide according to drug responses, and patches with the
highest attention score.
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model based on histopathology showed a correlation
with Ann Arbor stage, IPI risk, and bulky disease,
although there was borderline significance in bulky
disease and no significant correlation with serum LDH
levels. These classical prognostic factors were devel-
oped and validated before the addition of rituximab to
anthracycline-based chemotherapy. Because rituximab
considerably improves the treatment response and sur-
vival of patients with DLBCL, the influence of clinical
factors such as LDH and bulky disease on predicting
treatment response is somewhat reduced. This might
explain the weak correlation between these clinical
factors and the prediction model in this study,
because all included patients were treated with
rituximab-containing immunochemotherapy. However,
the anticipated response group according to the histo-
pathological prediction model of this study showed sig-
nificantly better RFS, which suggests that our study
model is effective in predicting treatment response to
immunochemotherapy and provides an independent
prognostic implication for patients with DLBCL in the
rituximab era.
According to the previous World Health Organization

(WHO) (2008) tumour classification, morphological
variants of DLBCL include centroblastic, immunoblastic,
and anaplastic subtypes, of which the centroblastic
subtype is the most common and is known to have a
better prognosis and higher OS [35–39]. However,
several biologically and clinically heterogeneous cases
remain for which there are no clear and acceptable
criteria for sub-classification, and these cases are
now collectively referred to as DLBCL, not otherwise
specified [40–42]. In this study, centroblastic and
immunoblast-type characteristics were observed in
patches from the WSI of the responder group, whereas
the anaplastic subtype and clear cytoplasm were
observed within the WSI of the non-responder group.
This is consistent with what was proposed in the
findings of a previous WHO tumour classification.
Morphological classification by pathologists is subject
to inter- and intra-observer differences in interpreta-
tion, which compromises diagnostic objectivity and
reproducibility. AI-based deep learning using digital
pathology images can overcome these shortcomings
and increase objectivity and reproducibility. We exter-
nally validated our results using TCGA data; however,
the performance of our model could be further
improved and validated using additional multi-centre
datasets.
In this study, we demonstrated the effectiveness of a

multiple instance learning method using clinical infor-
mation and pathology image data. This multi-modal
integration improves both the classification

performance and computational efficiency. However,
this study has several limitations. First, we initially
targeted 729 patients with DLBCL and ultimately
used 216 WSIs. In addition, the learning process
was performed using DINO with WSI without spe-
cific annotations to distinguish between neoplastic
and non-neoplastic areas within a WSI. Previous
studies have shown that incorporating appropriate
guidance biases can significantly improve model
performance [16]. In particular, among the 216 patients
used as study subjects, the organ in which DLBCL
occurred was not just the lymph nodes. Although the
shape and histological characteristics of tumour cells
may have been similar for DLBCL occurring in various
organs of the body, the background non-neoplastic tis-
sues may have been very different; therefore, these fac-
tors may have influenced the model’s training and
subsequent performance. Given the requirement for
expert haematopathologists willing to perform manual
annotations, as well as the labour-intensive and time-
consuming nature of manual delineation of tumour
regions, we did not incorporate a tumour segmentation
step in the current study. However, this might be a
reasonable addition to future versions of the model.
Despite the lack of a tumour region segmentation step,
our model generalised well to the external (TCGA)
dataset.
DLBCL is a heterogeneous disease, not only in

terms of clinicopathology, but also in terms of molecu-
lar and genetic characteristics. This study used only
clinical and digital pathology data, including data from
H&E-stained slides. However, DLBCL is not actually
diagnosed with H&E staining alone; it requires addi-
tional molecular pathological tests, including immuno-
histochemical staining, for diagnosis. It is expected
that if we perform multi-modal learning on various
types of data, including immunohistochemically
stained digital slides, other test results, and molecular
genetic data, we will be able to create a prediction
model with better performance.
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