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Abstract 

Background  Recent advances in Vision Transformer (ViT)-based deep learning have significantly improved the accu-
racy of lung disease prediction from chest X-ray images. However, limited research exists on comparing the effective-
ness of different optimizers for lung disease prediction within ViT models. This study aims to systematically evaluate 
and compare the performance of various optimization methods for ViT-based models in predicting lung diseases 
from chest X-ray images.

Methods  This study utilized a chest X-ray image dataset comprising 19,003 images containing both normal cases 
and six lung diseases: COVID-19, Viral Pneumonia, Bacterial Pneumonia, Middle East Respiratory Syndrome (MERS), 
Severe Acute Respiratory Syndrome (SARS), and Tuberculosis. Each ViT model (ViT, FastViT, and CrossViT) was individu-
ally trained with each optimization method (Adam, AdamW, NAdam, RAdam, SGDW, and Momentum) to assess their 
performance in lung disease prediction.

Results  When tested with ViT on the dataset with balanced-sample sized classes, RAdam demonstrated superior 
accuracy compared to other optimizers, achieving 95.87%. In the dataset with imbalanced sample size, FastViT 
with NAdam achieved the best performance with an accuracy of 97.63%.

Conclusions  We provide comprehensive optimization strategies for developing ViT-based model architectures, 
which can enhance the performance of these models for lung disease prediction from chest X-ray images.
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Background
Deep learning algorithms have demonstrated remark-
able success in distinguishing lung diseases by analyzing 
chest X-rays. Convolutional neural networks (CNNs), in 

particular, have achieved promising results in this domain 
[1–4]. However, the introduction of Vision Transformers 
(ViTs) has opened up new avenues for lung disease classifi-
cation [5]. Unlike CNNs, ViTs utilize self-attention mecha-
nisms, converting images into sequences of image patches 
that are then processed by a transformer [6]. This novel 
approach has yielded state-of-the-art performance in vari-
ous computer vision tasks, including image classification, 
object detection, and segmentation. Indeed, ViTs have sur-
passed CNNs in detecting COVID-19 from chest X-rays, 
achieving accuracies above 96% [7–10]. Moreover, new 
ViT-based models, such as FastViT and CrossViT, have 
also emerged and exhibited promising results. FastViT is 
a cutting-edge hybrid form of ViT that strikes an optimal 
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balance between latency and accuracy [11]. CrossViT 
employs a dual-branch transformer with a cross-attention 
mechanism, generating stronger image features [12].

On the other hand, enhancing the accuracy of deep 
learning models remains a crucial area of research. Data 
augmentation has proven to be an effective technique 
for improving neural network precision. However, not 
all models benefit equally from augmentation, neces-
sitating the exploration of broadly applicable methods 
such as loss function optimization [13]. Indeed, vari-
ous optimization techniques have demonstrated vary-
ing performances in training CNN models. For instance, 
the Xception model, which was pretrained for classify-
ing chest X-rays into normal, COVID-19, and pneumo-
nia categories, achieved the highest accuracy with the 
Root Mean Square Propagation (RMSProp) optimizer 
[14]. Meanwhile, other studies have reported superior 
performance with the Adaptive Moment Estimation 
(Adam) optimizer [15, 16] or Adaptive Gradient (AdaG-
rad) optimizer [17] when coupled with CNN models. 
These findings underscore the model-dependent nature 
of optimizer performance. Similarly, ViT models exhibit 
varying performance depending on the chosen optimizer. 
Rectified Adam (RAdam) [8, 9], Adam with cosine decay 
[7], NovoGrad [10], and AdaBelief [18] have been applied 
to ViTs. Notwithstanding, a comprehensive comparison 
of optimization methods for ViT models in chest X-ray 
image classification has not been conducted.

This study aimed to identify the best performing opti-
mization method in training ViT-based models for 
predicting lung diseases from chest X-ray images. We 
evaluated the following six optimization methods known 
to produce promising results in computer vision: Adam, 
Adam with weight decay (AdamW), Nesterov accelerated 
Adam (NAdam), RAdam, Stochastic Gradient Descent 
with weight decay (SGDW), and Momentum. Stochas-
tic Gradient Descent (SGD), a cornerstone optimizer in 
modern neural networks, paved the way for achieving 
minimal loss values [19, 20]. Enhancements to SGD, such 
as Momentum and Nesterov acceleration techniques, 
have improved its effectiveness, resulting in faster con-
vergence and higher accuracy with fewer steps [13]. In 
addition, several advanced algorithms, such as AdaG-
rad, RMSProp, Adadelta, and Adam, have been pro-
posed to effectively navigate complex functions with local 
extremes. The Adam-based algorithms utilize exponen-
tial moving averages and excel at refining minimization 
processes in functions with multiple extremes. A notable 
advantage of these methodologies lies in their ability to 
derive corrected estimates for bias, effectively countering 
the effects of initial bias settings [13]. Moreover, building 
upon the success of the Adam optimizer, several variants, 
including AdamW, NAdam, and RAdam, have emerged 

as promising alternatives. These variants introduce sub-
tle refinements to the original algorithm, incorporating 
features such as weight decay or adaptive learning rate 
adjustments to further enhance its performance and 
robustness. In this study, we conducted a comprehensive 
comparison of these optimization algorithms, including 
Adam and its variants (AdamW, NAdam, and RAdam) 
and the traditional Momentum and SGDW (a variant of 
SGD). This in-depth evaluation could address the best fit-
ted optimizer according to the model and dataset.

Methods
Dataset
We obtained a publicly available chest X-ray dataset from 
an open-source repository, details of which can be found 
in the availability of data and materials section [21–31]. 
The dataset comprised 19,003 images, categorized into 
six disease classes: COVID-19 (n = 3,616), Viral Pneu-
monia (n = 1,345), Bacterial Pneumonia (n = 2,772), Mid-
dle East Respiratory Syndrome (MERS, n = 144), Severe 
Acute Respiratory Syndrome (SARS, n = 134), and Tuber-
culosis (n = 800). Additionally, the dataset included nor-
mal chest X-rays (n = 10,192) for reference.

Model structure
The RGB values of the image data were normalized to 
an average of 0.5 and a standard deviation of 0.5. The 
image size was set to 224 x 224 pixels, and each image 
was divided into 16  x16 patches, which were then flat-
tened and linearly projected to create patch embeddings. 
These embeddings were combined with position embed-
dings to preserve positional information. We utilized the 
ViT-B/16 model [5], which was pretrained on ImageNet 
data [32]. For each block, layer normalization and resid-
ual connection were applied [5]. Following recommenda-
tions from previous research [33], we trained the model 
with a batch size of 32 for 15 epochs, shuffling the dataset 
before each epoch.

We applied six different optimizers, including Adam, 
AdamW, NAdam, RAdam, SGDW, and Momentum 
(Supplementary Table  1). Each optimizer was tested on 
three different learning rates: 10–4, 10–5, and 10–6. All the 
parameters used in the models are summarized in Sup-
plementary Table 2.

Evaluation
The performance of each model was evaluated using four 
key metrics: accuracy, F1-score, precision, and recall 
[34]. Accuracy, precision, and recall are parameters that 
can effectively assess the performance of a model, and 
F1-score is known to be robust against data with imbal-
anced sample size [34, 35].
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Results
Classification of the overall classes with various models 
and optimizers
The sample sizes for each class in the chest X-ray data-
set ranged from 134 to 10,192 images. The presence of 
imbalanced sample sizes may compromise the learning 
process, leading to biased outcomes [36, 37]. Thus, we 
evaluated the effect of the imbalanced sample size by 
performing analysis using the 4 class dataset with sam-
ple sizes greater than 1,000 (i.e., Normal, COVID-19, 
Viral Pneumonia, and Bacterial Pneumonia). We com-
pared these results with those from the complete dataset 
also including the small sample-sized classes (i.e., MERS, 
SARS, and Tuberculosis). The dataset was randomly split 
into the training dataset (80%) and test dataset (20%), 
and the model performance was evaluated with different 
learning rates of 10–4, 10–5, and 10–6. The overall struc-
ture of the model is demonstrated in Fig. 1.

First, we evaluated the performance of the models with 
no optimizer, which revealed poor accuracies in each test 
of the ViT with 4 class (30.90%) and the ViT with 7 class 
(14.89%), respectively (Supplementary Fig.  1). FastViT 
(6.10%) and CrossViT (22.72%) with 7 class also showed 
poor performance, indicating the need for the use of an 
optimizer (Supplementary Fig. 2). Next, we evaluated the 
performance of the ViT model with different optimizers 
and learning rates (i.e., 10–4, 10–5, and 10–6) using the 4 
class dataset. In general, ViT exhibited robust classifica-
tion independent of the utilization of different optimiz-
ers (Fig. 2a, Supplementary Table 3, and Supplementary 
Fig.  3). However, SGDW and Momentum exhibited 
relatively lower accuracies (SGDW: 81.71%, Momen-
tum: 82.18%) at learning rate 10–6 compared to the 
other optimizers (> 86%). Remarkably, RAdam showed 
the highest accuracy (95.87%, learning rate 10–5), while 
Adam achieved the highest F1-score (94.71%, learn-
ing rate 10–5). Adam-based optimizers (Adam, AdamW, 
NAdam, and RAdam) consistently demonstrated supe-
rior performance across all metrics, outperforming 
other optimizers (SGDW and Momentum). This finding 

Accuracy = (True positive + True negative)/(True positive + True negative + False positive + False negative)

F1−score = Harmonic mean of precision and recall = 2 x Precision x Recall /(Precision + Recall)

Precision = Positive Predictive Value = True positive /(True positive + False positive)

Recall = Sensitivity = True positive /(True positive + False negative)

could be attributed to the adaptive momentum algo-
rithm employed by Adam-based optimizers. In addition, 
we evaluated the performance of ViT with the imbal-
anced sample-sized dataset (i.e., 7 class dataset). RAdam 
at learning rate 10–5 demonstrated the highest accuracy 
(96.61%) and F1-score (96.62%) in the 7 class dataset 
(Fig.  2b, Supplementary Table  3, and Supplementary 
Fig. 4).

In addition to ViT, when we evaluated the performance 
of FastViT and CrossViT, FastViT showed best perfor-
mance with NAdam (accuracy 97.63%, F1-score 97.64%, 
learning rate 10–4; Fig.  2c, Supplementary Table  3, and 
Supplementary Fig.  5), while CrossViT showed best 
performance with AdamW (accuracy 96.95%, F1-score 
96.94%, learning rate 10–5; Fig.  2d, Supplementary 
Table 3, and Supplementary Fig. 6). These results indicate 
that Adam-based optimizers perform well in ViT-based 
models. Comparing results of the imbalanced 7 class 
dataset in all three models (ViT, FastViT, and CrossViT), 
both the highest accuracy and F1-score were achieved 
by FastViT with NAdam. This finding may indicate the 
robustness of NAdam against sample imbalance.

The disease class prediction with various ViT models 
and optimizers
Next, we sought to evaluate whether the prediction per-
formance for each disease class varied depending on 
the models and optimizers by calculating F1-scores. In 
the 4 class classification by ViT, the Normal class exhib-
ited robust prediction performance across all optimiz-
ers, showing the highest F1-score with RAdam (98.05%, 
learning rate 10–5), whereas the Viral Pneumonia class 
with NAdam showed the lowest performance (52.45%, 
learning rate 10–4) (Fig. 3a and Supplementary Table 4). In 
addition, we also evaluated the performance of ViT with 
varying optimizers in the 7 class classification. Similarly, 
RAdam showed satisfactory performance for predict-
ing the Normal class (98.73%, learning rate 10–5), while 
AdamW was the best optimizer for the class of Tubercu-
losis (99.07%, learning rate 10–6) (Fig. 3b and Supplemen-
tary Table 4). In FastViT and CrossViT, Tuberculosis was 
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the best predicted class (FastViT: Adam, 100%, learning 
rate 10–4; CrossViT: NAdam, 99.69%, learning rate 10–5) 
in both models (Fig. 3c, d and Supplementary Table 4).

Discussion
In this study, we evaluated the performance of differ-
ent optimizers in ViT-based prediction of lung diseases 
from chest X-ray images. By comparing the performance 
of six different optimizers, we found that Adam-based 
optimizers displayed superior performance compared to 
SGDW and Momentum. This might be because Adam-
based optimizers are implemented with an adaptive 
momentum, adapting learning rates to the parameters. 
Similarly, a previous study has demonstrated that SGD 
and Momentum increased error rates with the learning 
rate lower than 10–5 in CNN-based classification of brain 
MRI [38]. These results consistently suggest that Adam-
based optimizers are well suited for ViT-based models in 
predicting lung diseases using chest X-rays.

We demonstrated that RAdam showed optimal perfor-
mance in predicting the balanced 4 class dataset in the 
ViT model. Supporting this, RAdam has shown satisfac-
tory performance in ViT-based COVID-19 classification, 
although Adam or RMSProp did not [8, 9]. RAdam is a 
recent technique that combines the strengths of both 
Adam and SGD, ensuring swift convergence without eas-
ily succumbing to local optima. RAdam rectifies the vari-
ance of the adaptive learning rate term, which can make 
the variance consistent. Therefore, the convergence of 
RAdam is largely unaffected by the initial learning rate 
value [39].

In the imbalanced 7 class dataset, NAdam in FastViT 
had the highest accuracy (97.63%), which is comparable 
to previous ViT models for COVID-19 detection [8, 40–
42]. NAdam modifies the momentum technique applied 
in Adam to the Nesterov accelerated gradient (NAG). By 
combining the advantages of Adam and NAG, NAdam 
can find the global minimum faster and more accurately 
than Adam. Unlike Adam, NAdam is based on NAG, 

Fig. 1  Schematic overview of the analysis workflow
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Fig. 2  Classification of the overall classes with various models and optimizers. A, B The 4 class (A) and 7 class (B) datasets were classified using 
the ViT model with various optimizers (Adam, AdamW, NAdam, RAdam, SGDW, and Momentum), respectively. C, D The 7 class dataset was classified 
using the FastViT (C) or CrossViT (D) models with various optimizers, respectively. The evaluation metrics included accuracy, F1-score, precision, 
and recall, calculated at various learning rates of 10–4, 10–5, and 10–6
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Fig. 3  Classification of each disease class with various models and optimizers. A, B Each class in the 4 class (A) and 7 class (B) datasets was classified 
using the ViT model with various optimizers (Adam, AdamW, NAdam, RAdam, SGDW, and Momentum), respectively. C, D Each class in the 7 class 
dataset was classified using the FastViT (C) or CrossViT (D) models with various optimizers, respectively. The evaluation metrics included accuracy, 
F1-score, precision, and recall, calculated at various learning rates of 10–4, 10–5, and 10–6
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which does not calculate the gradient value at the current 
position but after moving in the direction of the momen-
tum. Thus, it computes the gradient at a new position 
[43].

For each class prediction, Normal and Tuberculosis 
were classified better than other classes. This might be 
due to the ambiguous feature of X-ray images among 
COVID-19, Viral Pneumonia, Bacterial Pneumonia, 
MERS, and SARS classes. The limitation of this study 
is that the models struggled with detecting small sized 
classes such as MERS and SARS. Further studies with 
diverse cases and varied sample sizes and diseases are 
needed for better performance. Additionally, we only 
focused on transformer models such as ViT, FastViT, and 
CrossViT. Future studies may deepen this field of study 
by investigating other optimizers in various computer 
vision models, such as hybrid models.

Conclusions
In summary, our analyses of ViT-based models with 
various optimizers showed varying performance in 
predicting lung diseases from the chest X-ray images. 
Adam-based optimizers showed better performance 
in predicting disease classes. In the balanced dataset, 
RAdam was the best performing optimizer, while NAdam 
with FastViT showed the best accuracy in the imbalanced 
dataset. For the prediction of each disease class, Nor-
mal and Tuberculosis were well predicted compared to 
other classes. Our results might help develop the opti-
mized algorithms with different model architectures and 
optimizers.
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