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Gut microbiome predicts cognitive function and depressive
symptoms in late life
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© The Author(s) 2024

Depression in older adults with cognitive impairment increases progression to dementia. Microbiota is associated with current
mood and cognition, but the extent to which it predicts future symptoms is unknown. In this work, we identified microbial features
that reflect current and predict future cognitive and depressive symptoms. Clinical assessments and stool samples were collected
from 268 participants with varying cognitive and depressive symptoms. Seventy participants underwent 2-year follow-up. Microbial
community diversity, structure, and composition were assessed using high-resolution 16 S rRNA marker gene sequencing. We
implemented linear regression to characterize the relationship between microbiome composition, current cognitive impairment,
and depressive symptoms. We leveraged elastic net regression to discover features that reflect current or future cognitive function
and depressive symptoms. Greater microbial community diversity associated with lower current cognition in the whole sample, and
greater depression in participants not on antidepressants. Poor current cognitive function associated with lower relative abundance
of Bifidobacterium, while greater GABA degradation associated with greater current depression severity. Future cognitive decline
associated with lower cognitive function, lower relative abundance of Intestinibacter, lower glutamate degradation, and higher
baseline histamine synthesis. Future increase in depressive symptoms associated with higher baseline depression and anxiety,
lower cognitive function, diabetes, lower relative abundance of Bacteroidota, and lower glutamate degradation. Our results suggest
cognitive dysfunction and depression are unique states with an overall biological effect detectable through gut microbiota. The
microbiome may present a noninvasive readout and prognostic tool for cognitive and psychiatric states.
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INTRODUCTION
Over 50 million people live with dementia [1, 2], burdened with
symptoms such as memory loss and inability to engage in
complex cognitive functions [3–7]. Characterized as a progres-
sive neurodegenerative condition, dementia advances from
preclinical stages to mild cognitive impairment (MCI) to major
neurocognitive impairment, such as Alzheimer’s Disease (AD)
[8, 9]. Cognitive symptoms are often comorbid with behavioral
symptoms: 30–50% of those with cognitive decline experience
late-life depression [10]. Cognitive decline comorbid with
depression, or even sub-diagnostic depressive symptoms,
decreases quality of life and increases likelihood of progression
to dementia [11–17]. Prevalence and incidence of dementia and
depressive symptoms are on the rise [18, 19], with the number
of impacted individuals expected to double by 2050 [20, 21].
Successful prevention or management of depressive and
cognitive symptoms may improve health outcomes in late life
[11, 22, 23], highlighting the urgent need to identify novel
treatment and prognostic approaches for depressive symptoms
and dementia [24].

Recent technological advances have enabled systems-level
analysis to identify novel biomarkers for diagnostics and monitor-
ing of treatment response in a variety of psychiatric diseases. One
such novel readout emerging from these studies is the
microbiome [8, 25–32]. Microbial community diversity, or alpha
diversity, is the most common metric reported in the gut
microbiome literature and represents a reliable indicator of overall
health status [33]. Alterations in alpha diversity in either direction
(i.e., increase or decrease) associate with non-comorbid depres-
sion and AD [31, 34–38]. Further, many studies identified taxa that
may play a role in depression [28, 31, 36, 38–47] or AD [34, 35],
while a smaller number explored functional microbiota changes in
depression [45, 48], often reporting conflicting results. Never-
theless, the debate continues over the utility of the microbiome
and microbial community diversity metrics as a readout of varying
degrees of psychiatric disease or cognitive function.
Studies comparing gut microbiome profiles in co-occurring

cognitive impairment and depressive symptoms in late life are
currently lacking. This is a significant knowledge gap not only due
to the high comorbidity and complex interactions between
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cognitive function and mood but also due to their pernicious
impact and frequently detrimental outcomes [15, 24, 49, 50].
Previous studies often reported conflicting results, further high-
lighting the need for more research in this area. Other issues
include small sample sizes, categorical approaches to psychiatric
diagnosis and cognitive impairment, and a lack of consideration for
important covariates (i.e., age, anxiety, antidepressant use, years of
education, Body Mass Index [BMI], diabetes, hypertension) [51].
This paper examines the novel hypotheses that microbial

community diversity, composition, and function may reflect
current and predict future cognitive function and depressive
symptoms in late life. We studied a large community clinic sample
of individuals with cognitive impairment and depressive symp-
toms by taking a dimensional approach to both cognitive function
and depressive symptoms. This approach enabled us to determine
whether gut microbiome community diversity associated with
current depression severity (and its dependence on antidepres-
sant use), cognitive function, and whether these sets of factors
moderated one another given the synergistic effect of comorbid
cognitive decline and depressive symptoms. Finally, we identify
behavioral and microbial features that reflect current or predict
future cognitive function and depressive symptoms using
predictive machine learning approaches.

METHODS
Participants and study design
Participants were recruited for the Biobank Innovations for chronic
Cerebrovascular disease With ALZheimer’s disease Study [52] (BICWALZS),
led by the Korea Disease Control and Prevention Agency for the Korea
Biobank Project. BICWALZS is an ongoing biobank platform study
conducted at five universities’ memory clinics and a community geriatric
mental health center to coordinate and oversee research on cognitive
decline and dementia. Participants were voluntarily recruited if they visited
a participating neurology or memory clinic. Some of the participants were
followed annually up to 4 years. Written informed consent was obtained
from all participants and caregivers. Those with current/history of a severe
neurological or medical condition that would interfere with the study (e.g.,
Parkinson’s disease, cerebral infarction, organ failure) were excluded from
the study. BICWALZS is registered in the Korean National Clinical Trial
Registry (KCT0003391) and approved by Institutional Review Board (AJIRB-
BMR-SUR-16-362).
At the time of this analysis, BICWALZS had recruited 713 participants

from 6 sites. We included participants who provided a stool sample at
baseline, N= 292, and a subset of those (N= 70/292) who completed
cognitive and depressive assessment at 2-year follow-up (mean follow-up
duration 23.53 ± 1.78 months). All participants were Korean. All participants
in this study were recruited from two sites: a memory clinic affiliated with
Ajou University Hospital and from Suwon Community Geriatric Mental
Health Center.

Assessments
All participants received comprehensive psychiatric and neuropsychologi-
cal evaluations described elsewhere [52, 53]. Current diagnosis of major or
minor depressive disorder was determined by a psychiatrist. Diagnosis of
subjective cognitive decline (SCD) was established if no impairment was
detected on the Clinical Dementia Rating (CDR) [54] and Seoul
Neuropsychological Screening Battery (SNSB) [55]. MCI was diagnosed
based on 0.5 CDR score and expanded Mayo Criteria on mild cognitive
impairment [56]. AD was diagnosed using National Institute on Aging-
Alzheimer’s Association core clinical probable AD criteria [57]. Vascular
dementia was diagnosed using major vascular neurocognitive disorder
criteria [58].
Current depressive symptoms were evaluated using the Korean-Version

of the Montgomery-Asberg Depression Rating Scale [59] (MADRS) and
Korean version of the Short form of Geriatric Depression Scale (SGDS-K)
[60]. Anxiety symptoms were evaluated using the South Korean version of
Beck’s Anxiety Inventory (KBAI) [61, 62]. General cognitive function was
evaluated using the Mini Mental Status Examination (MMSE) [63].
Additional questionnaires included The Mini Nutritional Assessment
(MNA) [64], International Physical Activity Questionnaire (IPAQ) [65],
lifetime alcohol consumption (average of weekly standard drinks

multiplied by years of drinking), and cigarette smoking (average of packs
smoked per day multiplied by years of smoking). Participants noted their
history of Diabetes Mellitus, hypertension, myocardial infarction, and
cardiac ischemia. Participants completed the same measures at their 2-year
follow-up.

Microbiome data collection and preprocessing
Stool samples were collected at the Ajou University Hospital biobank the
day before clinical assessment using a sterilized stool container and stored
at −20 °C until further processing (Fig. 1A). We used Illumina MiSeq
platform to amplify the V3 and V4 regions of the 16 S rRNA marker gene.
V3 and V4 Illumina adapters and dual barcode sequences were used to
generate paired end reads of 300 bases of length in each direction.
Demultiplexed sequences were pre-processed with QIIME2 [66] (version

2022.2). First, we trimmed the primers from demultiplexed sequences. The
average number of reads was 25,040 ± 6425. A trained researcher visually
inspected the results to determine the read quality. Next, we denoised the
data using DADA2 [67] (version 1.18), to remove chimeric sequences
(sequences formed from two or more biological sequences joined
together) and produce an amplicon sequence variant table. The data
was truncated to minimize inclusion of poor-quality bases, while
maximizing the overlap between the forward and backward reads.
Taxonomy was assigned using the Silva database [68] (version 138.1).
Only samples with over 10,000 reads after pre-processing were used for
the subsequent analyses.

Statistical analysis
Prior to statistical analysis, we excluded 24 participants: 15 participants
were excluded for having a psychiatric disorder other than depression as
their primary diagnosis (anxiety disorder: N= 3, sleep disorder: N= 1,
alcohol use: N= 5, psychotic disorder: N= 3, bipolar disorder: N= 1, other:
N= 2). Additional 6 participants were excluded for incomplete data, 1 for
low-quality stool sample, and 2 for experimenter error. The final sample
consisted of N= 268 participants at baseline. This cohort had 17
participants with SCD, 189 participants with MCI, 40 participants with
AD, and 22 participants with another dementia (subcortical vascular
dementia, AD with small vessel disease, or AD with vascular factors).
Clinically, 62 participants had no psychiatric diagnosis, whereas 124 and 82
participants had a primary diagnosis of major and minor depressive
disorder, respectively.
We used alpha diversity (Fig. 1B) to examine the association between

high-scale gut microbiota composition, depressive symptoms, antidepres-
sant use, and cognitive function. Alpha diversity summarizes the number
and distribution of species within a community, allowing for community
comparison. Alpha diversity was calculated using R library phyloseq on
minimally filtered, untrimmed data to produce four indices of alpha
diversity, including Fisher, Simson, Chao1, and Shannon Index. Each
diversity index was used as the dependent variable in four multiple linear
regression models built in R using the lm() function. All models had the
same independent variables: general cognitive function (MMSE), depres-
sive symptoms (MADRS), current antidepressant use [45] (yes or no), and
an interaction factor between depressive symptoms and antidepressant
use. Finally, all four models had the same covariates: participants’ age [45],
sex [45], BMI [45], nutrition [69] (MNA), anxiety [70] (KBAI), exercise [71]
(IPAQ), drinking [72], smoking [72], the site of testing, and presence or
absence of specific medical conditions, including hypertension [73],
myocardial infarction [74], cardiac ischemia [75], and diabetes mellitus
[76]. The VIF function from the car package was used to assess the variance
inflation factor and confirm absence of multicollinearity by ensuring that
VIF < 5. Regression coefficients were standardized using lm.beta package.
Processing scripts are available from the corresponding authors on
reasonable request.
We used visual inspection to ensure normally distributed model residuals

(Fig. 1C–F). The model containing the Shannon Index as the dependent
variable had the residual distribution most representative of a normal
distribution, which did not violate the normality assumption. To test for the
presence of a three-way interaction between cognitive function, depressive
symptoms, and antidepressant use, we built another model with Shannon
Index as the dependent variable, cognitive status, depressive symptoms,
antidepressant use and their interaction as the independent variable, while
controlling for the same variables as previously.
Exploratory analyses were conducted to identify the predictive potential

of microbial populations and microbial products in predicting cognitive
functioning and depressive symptoms at baseline and 2-year follow-up.
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Taxonomic analyses were done on centered log-ratio transformed data
agglomerated on phylum or genus level, where any unidentified taxa and
any taxa occurring in less than 65% of the participants were removed (this
excluded 11/15 taxa, 305/325 genus in the N= 268 sample, and 303/325
genus in the N= 70 sample). For microbial product analysis, we used
PICRUSt2 [77] for functional inference in the form of Kyoto Encyclopedia of
Genes and Genomes (KEGG) orthologs (KOs) [78]. We used Gut-Brain
Modules (GBMs) using the Gomixer [45] library in R to extract modules
corresponding to neuroactive compounds. The GBMs were restricted to a
subset which may impact cognitive function [79] or depression severity
[45] (Supplementary Table 1). The resulting modules were centered log-
ratio transformed and any modules occurring in less than 50% of the
participants were removed (this excluded 4/45 cognitive modules, and
0/19 depression modules).
We built six cross-validated elastic net models on 268 datapoints using

eNetXplorer package in R to discover features predictive of baseline
cognitive function and depressive symptoms. All models contained clinical
and demographic controls, including participants’ age [45], sex [45],
anxiety symptoms [80], years of education [81], BMI [45], use of
antidepressants [45], hypertension, myocardial infarction, cardiac ischemia,
and diabetes mellitus. Further, the models contained centered log-ratio
transformed microbiota on phylum, genus, or functional level, and either
depressive symptoms or cognitive functioning – whichever one was not
the dependent variable. We used five-fold cross-validation and ran 250

permutations per model. We optimized over 50 values of lambda, and 11
values of alpha ranging from 0 to 1.
We used the same framework on 70 datapoints to predict future

cognitive function and depressive symptoms at the 2-year follow-up using
baseline measures. All models contained baseline information on
participants’ age, sex, anxiety symptoms, years of education, BMI, use of
antidepressants, cognitive function, depressive symptoms, time in months
between baseline and follow-up, and log-ratio transformed microbiota
phylum/genus/GBMs. As MADRS was not collected at the 2-year follow-up,
we used the SGDS-K as an indicator of depressive symptoms. Both MADRS
and SGDS-K are reliable scales [82, 83] and their baseline correlation in this
sample was r(68)= 0.72, p < 0.0001.

RESULTS
Participants’ baseline clinical and demographic information is
reported in Table 1. At the two-year follow-up, most participants
exhibited a decrease in both cognitive function and depressive
symptoms (Table 2). On average, participants experienced a 0.75
(min=−16, max=+17, SD= 4.59) reduction in MMSE and
0.41(min=−14, max=+11, SD= 3.89) reduction in GDS. Com-
parison of participants who agreed to versus declined to provide a
stool sample is in Supplementary Table 2.

Fig. 1 Overview of data processing and results. A Stool samples were collected and pre-processed to create an amplicon sequence variant
table. B Multiple Alpha Diversity Indices were calculated to quantify gut microbiota community richness and evenness. C–F We ran four linear
regression models to examine whether gut microbiome community diversity was associated with current depression severity (and its
dependence on antidepressant use), cognitive function, and whether these sets of factors moderated one-another given the deleterious
effect of comorbid cognitive decline and depressive symptoms. Before interpreting any of the models, we used visual inspection to ensure
normally distributed model residuals. The model containing the Shannon Index as the dependent variable had the residual distribution most
representative of a normal distribution, which did not violate the normality assumption. G Distribution of cognitive symptoms, alpha diversity,
and depressive symptoms. H Higher microbial community diversity (alpha diversity) was associated with and greater depression severity in
those participants who were not currently on antidepressants. I Higher microbial community diversity was associated with lower cognitive
function in the whole sample. This figure was created with BioRender.com.

A. Kolobaric et al.

3066

Molecular Psychiatry (2024) 29:3064 – 3075



We found that both cognitive function and depressive
symptoms serve as significant predictors of microbiome composi-
tion, primarily alpha diversity, (r= 0.11, F(13, 254)= 2.52,
p= 0.003, Fig. 1G–I, Table 3). Higher microbial community
diversity (alpha diversity) associated with lower cognitive function
in the whole sample (Fig. 1I) and greater depression severity in
those participants who were not currently on antidepressants
(Fig. 1H). Greater alpha diversity was also associated with lower
lifetime alcohol consumption. There was no three-way-interaction
between microbial community diversity, MADRS, MMSE, and
antidepressant use (Supplementary Table 3).
We leveraged machine learning to determine if microbial

community metrics predict current MMSE and MADRS. Since these
are data driven, exploratory analyses aimed at feature identifica-
tion as opposed to hypothesis testing, we discussed all variables
below p < 0.1 threshold. This is common when interpreting

machine learning models as the goal is feature identification
and the models are a combination of a complex set of weights
including both significant and non-significant features especially
common in microbiome literature [45].
Taxonomic annotation at the phylum level could accurately

predict current MMSE with out-of-bag correlation coefficient
r(268)= 0.42, permuted p-value < 0.0001, alpha=0.06, lambda=
0.0081; and with genus data with out-of-bag correlation
coefficient r(268)= 0.38, permuted p-value < 0.0001, alpha=0,
lambda=0.3496; and with GBM data with out-of-bag correlation
coefficient r(268)= 0.35, permuted p-value < 0.0001, alpha=0,
lambda=1.8980. These results are shown in Table 4, Fig. 2A, and
Supplementary Table 4. In all models, lower MMSE (worse
cognitive function) was associated with lower education and
higher depressive symptoms. In the Phylum model, lower anxiety,
no antidepressant use, lower BMI, and greater relative abundance
of Bacteroidota associated with lower cognitive functioning. In the
Genus model, lower Bifidobacterium abundance were associated
with lower cognitive functioning. On functional level, lower
propionate degradation associated with lower cognitive function.
We could predict current MADRS accurately with the phylum

data with out-of-bag correlation coefficient r(268)= 0.67, per-
muted p-value < 0.0001, alpha=0.3, lambda=1.81; with the genus
data with out-of-bag correlation coefficient r(268)= 0.66, per-
muted p-value < 0.0001, alpha=0.1, lambda=7.93; and with GBM
data with out-of-bag correlation coefficient r(268)= 0.67, per-
muted p-value < 0.0001, alpha=0.1, lambda=7.93. Higher MADRS
(greater depression severity) was associated with higher anxiety
symptoms, antidepressant use, and lower cognitive functioning
across all models (Table 5, Fig. 2A, Supplementary Table 5). On
Phylum level, presence of Diabetes Mellitus associated with higher
depressive symptoms. On Genus level, lower education associated
with greater depression symptoms. On functional level, higher
microbial gamma-amino butyric acid (GABA) degradation cap-
ability associated with higher depression severity.
As our results suggest that key aspects of the microbiome, such

as taxonomic annotation and alpha diversity, predict current
MMSE and MADRS, we next examined if microbial features could
predict cognitive and depressive outcomes at the two-year follow
up visit.
We could predict future MMSE using the phylum data with out-of-

bag correlation coefficient r(70)= 0.67, permuted p-value < 0.0001,
alpha=0.2, lambda=0.6706; with genus data with out-of-bag
correlation coefficient r(70)= 0.64, permuted p-value < 0.0001,
alpha=0.1, lambda=2.1455; and with GBM data with out-of-bag
correlation coefficient r(70)= 0.62, permuted p-value < 0.0001,
alpha=0.1, lambda=2.5892 (Table 6, Fig. 2B, Supplementary Table 6).
Across all models, lower MMSE at 2-year follow-up (indicating
cognitive decline) was associated with lower baseline cognitive
function. Cognitive decline was also associated absence of
hypertension in the phylum model, lower Intestinibacter in the
genus model, and lower Glutamate degradation and greater
histamine synthesis potential in the GBM model.
We could predict future SGDS-K using the phylum data with out-

of-bag correlation coefficient r(70)= 0.56, permuted p-value < 0.0001,
alpha=0.0, lambda=0.3020; with genus data with out-of-bag
correlation coefficient r(70)= 0.54, permuted p-value < 0.0001,
alpha=0.1, lambda=6.7140; and with GBM data with out-of-bag
correlation coefficient r(70)= 0.52, permuted p-value < 0.0001,
alpha=0.0, lambda=5.0645 (Table 7, Fig. 2B, Supplementary Table 7).
In all three models, higher SGDS-K at 2-year follow-up (higher
depression) was associated with higher baseline depression. Higher
2-year SGDS-K was also associated with lower Bacteroidota in the
Phylum model and higher anxiety in the Genus model. In the GBM
model, higher SGDS-K was additionally associated with greater
anxiety, presence of diabetes mellitus, lower cognitive function, and
lower Glutamate Degradation potential by the gut microbiota.

Table 1. Participant sample summary at baseline.

Variable Category Mean(SD) /N(%)

Sex Female 190 (70.9)

Male 78 (29.1)

Age 72.5 (6.9)

Education (Years) 7.6 (4.8)

BMI 23.8 (3.4)

MADRS 15.2 (11.5)

Antidepressant Use No 136 (50.7)

Yes 132 (49.3)

MMSE 23.4 (4.7)

KBAI 9.1 (10.1)

MNA 20.6 (4.8)

IPAQ 1126.7 (1790.2)

Lifetime Drinking (g) 10980.6 (34928.8)

Lifetime Smoking (pack-year) 7.7 (17.9)

Psychiatric Dx None 62 (23.1)

Major Dep 124 (46.2)

Minor Dep 82 (30.4)

Cognitive Dx SCD 17 (6.3)

MCI 189 (70.5)

AD 40 (14.9)

Other
Dementia

22 (8.2)

Hypertension No 133 (49.6)

Yes 135 (50.4)

Myocardial infarction No 260 (97.0)

Yes 8 (3.0)

Cardiac Ischemia No 245 (91.4)

Yes 23 (8.6)

Diabetes Mellitus No 212 (79.1)

Yes 56 (20.9)

Site 1 146 (54.5)

2 122 (45.5)

BMI Body Mass Index, MADRS Montgomery-Asberg Depression Rating
Scale, MMSE Mini Mental Status Examination, KBAI South Korean version of
Beck’s Anxiety Inventory, MNA Mini Nutritional Assessment, IPAQ Interna-
tional Physical Activity Questionnaire, Dx Diagnosis, SCD Subjective
Cognitive Decline, MCI Mild Cognitive Impairment, AD Alzheimer’s Disease.
Site 1: Suwon Community Geriatric Mental Health Center. Site 2: Ajou
University Hospital.
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DISCUSSION
Our analysis of a large, transdiagnostic sample of older adults
illustrates novel associations between gut microbiota, cognitive
function, and depressive symptoms. Greater cognitive impairment
and greater depression severity (in those not on antidepressants)
was associated with greater gut microbiota diversity. Our data did
not support an association between the interaction of three
factors and alpha diversity. In taxonomic analyses, higher
abundance of Bacteroidota phylum and lower abundance of
Bifidobacterium genus was associated with worse cognitive
function at baseline. Moreover, greater gut microbial GABA
degradation associated with higher baseline depression severity
using an analysis of microbial metabolic pathways. Finally, we
found that baseline gut microbiota predicts cognitive function
and depressive symptoms at 2-year follow-up. Worse cognitive
function at 2-year follow up was associated with lower baseline
cognitive function and glutamate degradation, lower relative
abundance of Intestinibacter, and higher baseline histamine

synthesis. Worse depressive symptoms at 2-year follow up was
associated with higher baseline depression and anxiety, diabetes,
lower cognitive function, lower relative abundance of Bacteroi-
dota and lower baseline glutamate degradation potential.

Alpha diversity is associated with cognitive and depressive
symptoms
Based on the previous literature showing associations between
cognitive function and alpha diversity, we first determined
whether cognitive function in an aging population was associated
with gut microbiota. Lower cognitive function was associated with
greater alpha diversity. These results are intriguing, given a recent
meta-analysis demonstrating lower alpha diversity in those with
AD compared to healthy controls [35]. It is essential to note that
alpha diversity is a relative measure – high diversity is not
implicitly a better or worse outcome for a community [84]. There
could be multiple reasons for the differences in findings, including
different patient demographics and categorical versus continuous

Table 2. Sample summary for N= 70 participants who completed 2-year follow-up.

Baseline Follow-up t (df) P-Value

Variable Category Mean(SD)/ N(%) Mean(SD)

Sex Female 52 (74.3)

Male 18 (25.7)

Age 73.2 (6.2)

Education (Years) 7.7 (4.7)

BMI 24.2 (4.0)

MADRS 12.5 (9.4)

SKGDS 6.7 (4.6) 6.3 (4.7) 1.38 (69) 0.17

Antidepressant Use No 23 (32.9)

Yes 47 (67.1)

MMSE 23.8 (5.1) 23.1 (6.3) 0.89 (69) 0.37

KBAI 6.2 (7.2)

MNA 20.9 (3.9)

IPAQ 1398.8 (1950.0)

Lifetime Drinking 4289.2 (27935.6)

Lifetime Smoking 5.2 (14.2)

Psychiatric Dx None 16 (22.8)

Major Dep 25 (35.7)

Minor Dep 29 (41.4)

Cognitive Dx SCD 4 (5.7)

MCI 55 (78.6)

AD 7 (10.0)

Other Dementia 4 (5.7)

Hypertension No 38 (54.3)

Yes 32 (45.7)

Myocardial infarction No 67 (95.7)

Yes 3 (4.3)

Cardiac Ischemia No 64 (91.4)

Yes 6 (8.6)

Diabetes Mellitus No 52 (74.3)

Yes 18 (25.7)

Site 1 51 (72.9)

2 19 (27.1)

BMI Body Mass Index, MADRS Montgomery-Asberg Depression Rating Scale, SKGDS South Korean Geriatric Depression Scale, MMSE Mini Mental Status
Examination, KBAI South Korean version of Beck’s Anxiety Inventory, MNA Mini Nutritional Assessment, IPAQ International Physical Activity Questionnaire, Dx
Diagnosis, SCD Subjective Cognitive Decline, MCI Mild Cognitive Impairment, AD Alzheimer’s Disease. Site 1: Suwon Community Geriatric Mental Health Center.
Site 6: Ajou University Hospital. Baseline and follow-up scores were compared using a paired sample t-test.
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approach to cognitive function. Nevertheless, both studies
support the idea of gut dysbiosis in cognitive impairment and
point toward an urgent need for a more thorough understanding
of the gut-brain axis in cognitive impairment.
Based on associations between mid-life depression and gut

microbiota, we investigated whether depressive symptoms in
late life associated with alpha diversity. Alpha diversity was
significantly associated with depressive symptoms in a way
moderated by antidepressant use – greater depression
severity associated with greater diversity in those not using
antidepressants. These findings align with human and animal
studies that implicate gut microbiota as an antidepressant
response mediator [85–91]. Our findings do not align with a

recent meta-analysis that did not detect alpha diversity
alterations in midlife depression [92]. This may be because most
previous studies lack control for covariates such as BMI and
antidepressant use [30, 92, 93].
Finally, we examined whether the potential synergistic effect

between comorbid cognitive decline and depressive symptoms
may be reflected in the gut microbiota community composition
[94]. We did not find a significant three-way interaction between
cognitive function, depressive symptoms, and antidepressant use.
At this time, we cannot conclude if we failed to detect the
synergistic effect because it does not exist, or because it cannot be
detected with the resolution offered by 16 S marker gene
sequencing.

Table 4. Significant baseline MMSE predictors for three separate models.

Phylum Genus GBMs

Feature Mean β (SD) p Mean β (SD) p Mean β (SD) p

Education (Years) 2.048 (0.008) <0.001 0.799 (0.003) <0.001 1.326 (0.006) <0.001

MADRS −1.104 (0.012) 0.005 −0.166 (0.014) 0.031 −0.55 (0.006) 0.006

KBAI 0.928 (0.011) 0.015

Antidepressant Use [Reference: No] 0.565 (0.008) 0.058

BMI 0.628 (0.01) 0.039

Bacteroidota −0.376 (0.033) 0.036

Bifidobacterium 0.149 (0.007) 0.051

Gut-Brain Modules GBMs, MADRS Montgomery-Asberg Depression Rating Scale, MMSE Mini Mental Status Examination, KBAI South Korean version of Beck’s
Anxiety Inventory, BMI Body Mass Index. All factors, including non-significant factors, are reported in Supplementary Table 4.
The results were obtained by building three separate elastic net models, one for each microbiota taxonomy/function, to predict MMSE. We optimized over 50
values of lambda and 11 values of alpha over the range [0–1]. We ran 250 permutations using five-fold cross-validation for each model. p-values were used to
assess statistical significance of mean non-zero feature coefficients and were obtained by running a model versus null comparison. β values refer to mean of
standardized regression coefficients over runs (n= 250), weighed by non-zero frequency over folds (n= 5). SD refers to standard deviation of feature
coefficients over runs (n= 250), weighted by non-zero frequency over folds (n= 5).

Table 3. Significant predictors of alpha diversity as represented by Shannon Index.

Variable β (SD) Z (p-value)

(Intercept) 2.91 (0.49) 5.92***

MMSE −0.13 (0.01) −2.00*

MADRS 0.32 (0.01) 2.87**

Antidepressant Use [Reference Group: No] 0.13 (0.11) 1.21

MNA 0.03 (0.01) 0.34

Age 0.11 (0.00) 1.70

Sex [Reference Group: Female] 0.04 (0.10) 0.48

BMI −0.01 (0.01) −0.08

KBAI 0.05 (0.00) 0.61

IPAQ −0.06 (0.00) −0.98

Site [Reference Group: 1] −0.15 (0.08) −1.91

Lifetime Drinking −0.19 (0.00) −2.76**

Lifetime Smoking 0.14 (0.00) 1.95

Hypertension [Reference Group: No] −0.04 (0.07) −0.64

Myocardial infarction [Reference Group: No] −0.03 (0.20) −0.42

Cardiac Ischemia [Reference Group: No] 0.10 (0.12) 1.67

Diabetes Mellitus [Reference Group: No] −0.11 (0.08) −1.72

MADRS * Antidepressant Use −0.39 (0.01) −3.01**

β refers to standardized beta coefficients. Significance levels for p-values: 0.001***, 0.01**, 0.05*, 0.1. Bold variable names indicate statistical significance, BMI
Body Mass Index. MADRS Montgomery-Asberg Depression Rating Scale, MMSE Mini Mental Status Examination, KBAI South Korean version of Beck’s Anxiety
Inventory, IPAQ International Physical Activity Questionnaire, MNA Mini Nutritional Assessment. Site 1: Suwon Community Geriatric Mental Health Center. Site
6: Ajou University Hospital.
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Table 5. Significant baseline MADRS predictors for three separate models.

Phylum Genus GBMs

Feature Mean β (SD) p Mean β (SD) p Mean β (SD) p

KBAI 6.09 (0.014) <0.001 4.01 (0.009) <0.001 3.99 (0.007) <0.001

MMSE −1.23 (0.018) 0.007 −0.69 (0.008) 0.009 −0.71 (0.007) 0.007

Antidepressant Use [Reference: No] 0.82 (0.022) 0.047 0.6 (0.007) 0.018 0.59 (0.006) 0.02

Education (Years) −0.39 (0.028) 0.093

Diabetes Mellitus [Reference: No] 0.69 (0.031) 0.089

GABA degradation 0.55 (0.015) 0.026

Gut-Brain Modules GBMs, MADRS Montgomery-Asberg Depression Rating Scale, MMSE Mini Mental Status Examination, KBAI South Korean version of Beck’s
Anxiety Inventory, GABA γ-Aminobutyric acid. All factors, including non-significant factors, are reported in Supplementary Table 5.
The results were obtained by building three separate elastic net models, one for each microbiota taxonomy/function, to predict MADRS. We optimized over 50
values of lambda and 11 values of alpha over the range [0–1]. We ran 250 permutations using five-fold cross-validation for each model. p-values were used to
assess statistical significance of mean non-zero feature coefficients and were obtained by running a model versus null comparison. β values refer to mean of
standardized regression coefficients over runs (n= 250), weighed by non-zero frequency over folds (n= 5). SD refers to standard deviation of feature
coefficients over runs (n= 250), weighted by non-zero frequency over folds (n= 5).

Fig. 2 Summary of findings. A Lower current cognitive function is associated with lower education, no antidepressant use, higher relative
levels of Bacteroidota, lower Bifidobacterium, lower BMI, and lower anxiety. Higher current depression is associated with antidepressant use,
lower education, diabetes, higher anxiety, and higher GABA degradation. B Lower cognition after 2 years is associated with lower baseline
cognition, lower baseline abundance of Intestinibacter, absence of hypertension, lower baseline glutamate degradation, and higher baseline
histamine synthesis. Higher depression after 2 years is associated with higher baseline anxiety and depression, diabetes, lower baseline
cognition, lower baseline Bacteroidota, and lower baseline glutamate degradation. This figure was created with BioRender.com.
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Gut microbiome reflects current cognitive function and
depressive symptoms
Next, we determined which demographic, clinical, and gut
microbiome features reflect current cognitive status. We first
confirmed known predictors of cognitive function, including
education [81], depressive symptoms [95], anxiety [96], antide-
pressant use [97], and BMI [98]. We further demonstrated that a
higher abundance of Bacteroidota and lower abundance of
Bifidobacterium predict lower cognitive functioning. Bacteroidota
has previously been found to associate with cognitive function in
animal models [99, 100], Parkinson’s Disease [101, 102], and AD
without depression [103]. We replicate and extend these findings,
supporting the hypothesis that decreased abundance of Bacter-
oidota may be protective against dementia, potentially by
reducing the amyloid load through immune-mediated pathways
[104–106]. In contrast, Bifidobacterium is a beneficial gut genus
with significant health benefits, as it suppresses inflammation and
ameliorates amyloid accumulation [107, 108]. Supplementing
Bifidobacterium improves cognitive function in animal models
and people with varying levels of cognitive impairment [107–113].
Similarly, we identified features that reflect current depressive

symptoms. Depression severity was associated with cognitive
function [95], antidepressant use [114], anxiety symptoms [115],
education level, and diabetes mellitus [116]. Higher microbial
GABA degradation also associated with higher depression severity.
GABA, a major inhibitory neurotransmitter, has been implicated

across psychiatric disorders primarily for its role in inhibitory
tuning [117]. Reduced GABAergic function is a molecular hallmark
of depression [118]. Those with depression exhibit higher GABA
degradation and lower GABA biosynthesis [51]. A reduction in
GABAergic function plays a crucial role in cognitive function,
influencing symptoms that manifest across depression and aging
[119]. Microbial-derived GABA impacts GABA levels across the
body and is associated with changes in behavior and functional
connectivity [120]. Taken together, these findings may also point
towards unique interactions between antidepressants and micro-
biome in psychiatric aging and drug degradation [85, 121].

Gut microbiome predicts future cognitive function and
depressive symptoms
Having established that gut microbiota is associated with current
cognitive function, we next wanted to determine whether gut
microbiota dynamics have predictive value for future cognitive
function. Lower future cognitive function was associated with
lower baseline cognitive function – a known predictor of future
cognitive function [122, 123]. Surprisingly, lower future cognitive
function was also associated with absence of hypertension. While
some have reported a positive association between late life and
hypertension and cognitive function [124], others argue that such
relationship is minimal [125] or negative [126]. On taxonomic
level, cognitive decline was associated with decreased relative
abundance of Intestinibacter – a hallmark of gut dysbiosis

Table 7. Significant 2-year SGDS-K predictors for three separate models.

Phylum Genus GBMs

Feature Mean β (SD) p Mean β (SD) p Mean β (SD) p

SGDS-K 2.63 (0.035) <0.001 0.89 (0.006) <0.001 1.08 (0.008) <0.001

KBAI 0.27 (0.01) 0.05 0.47 (0.012) 0.055

MMSE −0.43 (0.01) 0.071

Diabetes Mellitus [Reference: No] 0.4 (0.008) 0.093

Bacteroidota −0.58 (0.018) 0.099

Glutamate degradation I −0.41 (0.01) 0.08

GBMs Gut-Brain Modules, All predictive features were collected at baseline. SGDS-K South Korean short version of the Geriatric Depression Scale, MMSE Mini
Mental Status Examination, KBAI South Korean version of Beck’s Anxiety Inventory. All features, including non-significant features, are reported in
Supplementary Table 7.
The results were obtained by building three separate elastic net models, one for each microbiota taxonomy/function, to predict SGDS-K at 2-year follow-up.
We optimized over 50 values of lambda and 11 values of alpha over the range [0–1]. We ran 250 permutations using five-fold cross-validation for each model.
p-values were used to assess statistical significance of mean non-zero feature coefficients and were obtained by running a model versus null comparison. β
values refer to mean of standardized regression coefficients over runs (n= 250), weighed by non-zero frequency over folds (n= 5). SD refers to standard
deviation of feature coefficients over runs (n= 250), weighted by non-zero frequency over folds (n= 5).

Table 6. Significant 2-year MMSE predictors for three separate models.

Phylum Genus GBMs

Feature Mean β (SD) p Mean β (SD) p Mean β (SD) p

MMSE 3.50 (0.032) <0.001 2.80 (0.033) <0.001 2.57 (0.029) <0.001

Hypertension [Reference: No] 1.01 (0.028) 0.058

Intestinibacter 1.14 (0.027) 0.014

Glutamate degradation I −0.69 (0.024) 0.078

Histamine synthesis 0.67 (0.073) 0.092

GBMs Gut-Brain Modules. All predictive features were collected at baseline. MMSE Mini Mental Status Examination. All features, including non-significant
features, are reported in Supplementary Table 6.
The results were obtained by building three separate elastic net models, one for each microbiota taxonomy/function, to predict MMSE at 2-year follow-up. We
optimized over 50 values of lambda and 11 values of alpha over the range [0–1]. We ran 250 permutations using five-fold cross-validation for each model. p-
values were used to assess statistical significance of mean non-zero feature coefficients and were obtained by running a model versus null comparison. β
values refer to mean of standardized regression coefficients over runs (n= 250), weighed by non-zero frequency over folds (n= 5). SD refers to standard
deviation of feature coefficients over runs (n= 250), weighted by non-zero frequency over folds (n= 5).
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suggesting inflammation-driven cognitive decline and increased
biological aging [127–133]. Functionally, cognitive decline was
associated with lower baseline glutamate degradation and higher
histamine synthesis potential. The association between lower
glutamate degradation potential and future cognitive decline
points to the role of the gut-brain axis in glutamate excitotoxicity
leading to neurodegeneration [134]. The association between
increased bacterial histamine synthesis potential and future
cognitive decline supports the hypothesis of neuroinflammatory-
induced neurodegeneration in dementia [135].
Similarly, we confirmed features predictive of increased future

depression, including higher baseline depression and anxiety,
lower baseline cognitive function, and presence of diabetes
mellitus. Future increase in depressive symptoms was also
associated with lower relative abundance of Bacteroidota at
baseline, a finding previously reported in mid-life depression
[136]. These findings point to the complex interactions between
depression, anxiety, aging, and cognition, further emphasizing the
need to treat late-life psychiatric symptoms [137, 138]. Interest-
ingly, higher baseline Bacteroidota associated with lower baseline
cognitive function, while lower baseline Bacteroidota also
associated with future depression increase, emphasizing Bacter-
oidota is a large phylum with a variety of species that differently
impact host health. Finally, increased future depression was
associated with lower baseline glutamate degradation potential.
In a recent investigation, modifications in microbial metabolites
preceding the metabolic processes of glutamate and GABA have
been established as having a direct correlation with depression
[139]. In this study, we validate and broaden the pivotal
significance of microbial GABA and glutamate metabolism by
elucidating that variations in both metabolic pathways are
intricately linked to the manifestation of present and prospective
depressive symptoms, respectively.
This study has several limitations. Our sampling was non-

probabilistic, and our sample was predominately female. Our
sample is inherently biased to include people with subjective or
diagnosed cognitive decline. It is unclear to what extent our
findings generalize to non-Korean individuals. Mood and cogni-
tion changes at the two-year-follow-up were not statistically
significant, indicating that a longer follow-up period may be
required. Our microbiome data was collected using 16 S rRNA
marker gene sequencing and thus is not able to capture changes
to gene content or microbial function. Our analysis focused on the
most frequent taxa; therefore, our findings may not extend to rare
ones. Extensive longitudinal studies with diverse participants
sampled using shotgun sequencing are required to further
elucidate the relationships between gut microbiota, cognitive
impairment, and depressive symptoms in late life.
This is the first longitudinal, transdiagnostic study that

investigated the current and future impacts of the gut microbiome
on cognitive decline and depressive symptoms in a large sample
of older adults. As such, it represents an essential step forward at
the intersection of psychiatry, aging, and the microbiome. Our
results suggest that the gut microbiome contributes to cognitive
function and depressive symptoms across stages of cognitive
impairment, whereby GABA-degrading microbiota species may be
of particular interest. Further, the microbiome may predict future
cognitive decline and depressive symptoms, potentially offering a
biomarker for identifying people who may experience cognitive or
mood decline. Such models would be of great benefit for
treatment personalization which may alter disease progression
and increase quality of life among the elderly.

DATA AVAILABILITY
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