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Efficacy of automated machine 
learning models and feature 
engineering for diagnosis 
of equivocal appendicitis using 
clinical and computed tomography 
findings
Juho An 1,8, Il Seok Kim 2,8, Kwang‑Ju Kim 3, Ji Hyun Park 4, Hyuncheol Kang 5, Hyuk Jung Kim 6, 
Young Sik Kim 7 & Jung Hwan Ahn 1,3*

This study evaluates the diagnostic efficacy of automated machine learning (AutoGluon) with 
automated feature engineering and selection (autofeat), focusing on clinical manifestations, and 
a model integrating both clinical manifestations and CT findings in adult patients with ambiguous 
computed tomography (CT) results for acute appendicitis (AA). This evaluation was compared with 
conventional single machine learning models such as logistic regression(LR) and established scoring 
systems such as the Adult Appendicitis Score(AAS) to address the gap in diagnostic approaches for 
uncertain AA cases. In this retrospective analysis of 303 adult patients with indeterminate CT findings, 
the cohort was divided into appendicitis (n = 115) and non‑appendicitis (n = 188) groups. AutoGluon 
and autofeat were used for AA prediction. The AutoGluon‑clinical model relied solely on clinical 
data, whereas the AutoGluon‑clinical‑CT model included both clinical and CT data. The area under 
the receiver operating characteristic curve (AUROC) and other metrics for the test dataset, namely 
accuracy, sensitivity, specificity, PPV, NPV, and F1 score, were used to compare AutoGluon models 
with single machine learning models and the AAS. The single ML models in this study were LR, LASSO 
regression, ridge regression, support vector machine, decision tree, random forest, and extreme 
gradient boosting. Feature importance values were extracted using the “feature_importance” 
attribute from AutoGluon. The AutoGluon‑clinical model demonstrated an AUROC of 0.785 (95% CI 
0.691–0.890), and the ridge regression model with only clinical data revealed an AUROC of 0.755 (95% 
CI 0.649–0.861). The AutoGluon‑clinical‑CT model (AUROC 0.886 with 95% CI 0.820–0.951) performed 
better than the ridge model using clinical and CT data (AUROC 0.852 with 95% CI 0.774–0.930, 
p = 0.029). A new feature, exp(‑(duration from pain to CT)3 + rebound tenderness), was identified 
(importance = 0.049, p = 0.001). AutoML (AutoGluon) and autoFE (autofeat) enhanced the diagnosis 
of uncertain AA cases, particularly when combining CT and clinical findings. This study suggests 
the potential of integrating AutoML and autoFE in clinical settings to improve diagnostic strategies 
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and patient outcomes and make more efficient use of healthcare resources. Moreover, this research 
supports further exploration of machine learning in diagnostic processes.

Keywords Acute appendicitis, Computed tomography, Automated machine learning, Equivocal, Automated 
feature engineering

Abbreviations
AA  Acute appendicitis
AG  Appendicitis group
AAS  Adults appendicitis score
AUROC  Area under the receiver operating characteristic
CI  Confidence interval
CRP  C-reactive protein
CT  Computed tomography
DT  Decision tree
LASSO  Least absolute shrinkage and selection operator
LR  Logistic regression
NAG  Non-appendicitis group
RLQ  Right lower quadrant
RF  Random forest
RT  Rebound tenderness
SVM  Support vector machine
XGBoost  Extreme gradient boosting
WBC  White blood cell

Surgical decision-making is a complex and challenging domain for both clinicians and  patients1,2, particularly 
in emergency medical scenarios such as acute appendicitis (AA). The need to decide on the optimal treatment 
and diagnostic strategies within a limited timeframe highlights the urgency and significance of these decisions. 
Although studies have revealed promising results in evaluating the diagnostic performance of clinical findings 
for AA, abdominal computed tomography (CT) is widely used as an adjunctive or confirmatory tool to improve 
diagnostic accuracy, particularly in cases with atypical or nonspecific clinical  findings3–6. Despite advancements 
in CT technology, accurately diagnosing AA remains a significant challenge, particularly when CT findings 
are  inconclusive4–8. Approximately 8–13% of patients undergoing CT scans for suspected AA encounter these 
equivocal  results9, and approximately one-third of these cases are diagnosed as  AA7,8. These cases present a 
diagnostic dilemma for clinicians, highlighting the necessity for additional diagnostic tools to differentiate AA 
from other conditions in patients with equivocal CT  findings4,6,10. Although studies have focused on the diagnosis 
and treatment of definitive AA, limited studies have investigated equivocal  AA4,6,11–15. The scarcity of equivocal 
AA research is challenging but imperative because these cases present a critical medical dilemma because of the 
potential necessity for surgical decision-making4,6–8. The research on clinical decision support systems (CDSS) 
and diagnostic decision support systems (DDSS) should be developed to better understand and manage such 
ambiguous cases, ensuring appropriate and timely medical intervention. Specifically, CDSS tailored for clinical 
diagnosis are referred to as  DDSS16.

Machine learning (ML) techniques have demonstrated high accuracy across a wide range of applications, 
including disease diagnosis and  prognosis17. Automated ML (AutoML) has revolutionized ML model develop-
ment by automating tasks such as data preprocessing, feature selection/engineering, and hyperparameter tuning, 
thereby enhancing model performance, reducing time and costs, and rendering advanced ML accessible to those 
without in-depth algorithmic or coding  expertise18–20. Although AutoML streamlines model development, it 
has limitations, including limited domain-specific knowledge, constrained customization for unique projects, 
operational complexity in smaller organizations, opaque modelling, data quality dependency, and diagnostic 
 challenges20. Moreover, it may underperform in specific contexts, evidenced by reduced efficacy in specialized 
medical diagnostics and multilabel classification tasks, possibly because of restricted domain expertise or data 
 idiosyncrasies21–23. Despite these limitations, AutoML is particularly effective for structured data, efficiently 
automating feature engineering and model  building20. It excels in supervised learning with small to medium-
sized structured datasets, rapidly exploring numerous model  options20. This renders AutoML highly beneficial 
for proof-of-concept and prototype development, facilitating swift iteration and validation, especially in struc-
tured data  environments20. In various clinical scenarios, studies have applied ML for the diagnosis of definitive 
AA but not equivocal  AA11,12,24–29. To the best of our knowledge, limited studies have focused on the application 
of ML to equivocal AA; notably, studies have yet to use AutoML and automated feature engineering (AutoFE). 
Additionally, although most studies have focused on using clinical findings, an AutoML model that incorpo-
rates both clinical manifestations and CT findings as parameters is yet to be devised to diagnose equivocal AA. 
To address these gaps, this study enhanced modeling for diagnosing equivocal AA by using AutoGluon and 
the autofeat AutoML framework. AutoGluon, Amazon’s advanced open-source AutoML framework, provides 
the modeling backbone, whereas autofeat, specifically designed for automated feature engineering (AutoFE), 
optimizes model performance by focusing on the most influential variables. These tools form the foundational 
pillars of our approach in the expansive landscape of ML  platforms29,30.

In this study, we aim to make several key contributions to the field of medical diagnosis and specifically to 
the diagnostic strategies of AA with equivocal CT findings. First, we intend to provide evidence for the diagnosis 
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and treatment of this uncommon, yet clinically significant condition. Accordingly, we contribute to filling a 
critical gap in the current medical literature, where the focus has primarily been on definitive AA. Second, our 
approach leverages both clinical findings and CT interpretation results. This dual-faceted approach is in contrast 
to those of previous studies, which have predominantly relied on one or the other, offering a holistic and accurate 
diagnostic strategy. Third, we proposed a novel methodology that utilizes AutoML techniques—a subset of ML. 
This methodology is designed to be accessible and implementable by clinicians across various settings, includ-
ing those with limited expertise in ML or coding. By providing a streamlined, efficient, and effective diagnostic 
tool, we enhanced the diagnostic process for AA, particularly in cases in which CT findings are ambiguous, thus 
facilitating more informed and timely clinical decision making.

The aim of this study was to compare the diagnostic accuracy and performance of an AutoML model, 
enhanced with AutoFE for clinical manifestations, against a comprehensive model integrating clinical and CT 
findings, compared with a single ML model and the conventional adult appendicitis score (AAS)13. Considering 
the limitations of feature importance in AutoML (AutoGluon), we investigated the importance of features used 
in the AutoML analysis.

Methods
Study design
This study was conducted as a single-center, observational, retrospective analysis from April 2011 to Novem-
ber 2019, with approval from the Institutional Review Board of Ajou University Hospital (IRB no. AJOUIRB-
MDB-2021-291). Due to the retrospective nature of the study, the requirement for informed consent was waived 
by the Institutional Review Board of Ajou University Hospital.

To investigate the capabilities of AutoML models in predicting AA in patients with ambiguous CT findings, 
we followed the TRIPOD guidelines (as detailed in Online Supplementary Table S1) and established an AutoML 
 framework31. All methods were performed in accordance with the ethical standards of the Declaration of Helsinki 
and TRIPOD guidelines.

Enrolled patients
The study population comprised patients aged 15 years and older who underwent intravenously enhanced 
abdominal CT scans for the differential diagnosis of AA. AA was considered a differential diagnosis in the CT 
reports due to ambiguous (equivocal) CT findings, totaling 335 patients. The CT report system classified the 
likelihood of AA into five categories, namely definitive “appendicitis,” “probable appendicitis,” “indeterminate” 
(equivocal CT findings), “probably not appendicitis,” and “normal appendix.” Of the 335 patients, 303 were 
included in the study, and 32 patients were excluded for incomplete medical records (Fig. 1).

Imaging methods and interpretation
In this study, all CT scans were performed using a 16-slice multidetector CT scanner (Brilliance 16, Philips 
Healthcare, Eindhoven, Netherlands), with intravenous contrast material administration. No oral contrast 
medium was used. The scans covered the abdomen from the diaphragm to the symphysis pubis. The technical 
parameters for the scans included a collimation of 1.5 mm, rotation time of 0.75 s, and a pitch of 1.188. The 
images were reconstructed into axial and coronal sections with a thickness ranging from 3 to 5 mm. The tube 
voltage and current settings were 120 kVp and 150–300 mA, respectively. Contrast enhancement was achieved 
using iohexol (Omnipaque 350, GE Healthcare, Princeton, NJ, USA) and iopamidol (Pamiray 370, Dongkook 
Pharmaceutical, Seoul, Korea), administered 60 s post an initial dose of 2 mL/kg body weight. The contrast 
medium was infused at a rate of 4 mL/s through an antecubital vein. A retrospective analysis of abdominal CT 
scans with equivocal findings was performed by an experienced abdominal radiologist, who had over 15 years of 
expertise. The radiologist searched for CT signs indicative of AA, which included cross-sectional appendix outer 
diameter measurements, peri-appendiceal fat stranding or fluid, appendiceal wall enhancement, appendiceal 

Fig. 1.  Study flowchart. AG appendicitis group, CT computed tomography, NAG non-appendicitis group.
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and cecal wall thickening, intraluminal air, peri-cecal lymph nodes, and fluid filled small bowel. The measure-
ment of the appendix diameter was conducted on the axially enhanced sections, specifically from the appendix’s 
largest visible portion.

Clinical data and conventional scoring system (AAS)
The present study conducted a detailed examination of patient demographics, clinical presentations, and labo-
ratory findings, including blood and urine analyses, sourced from electronic medical records. Data collection 
was performed systematically by a single emergency medicine physician unrelated to this study. Patients with 
ambiguous CT results were divided into two cohorts based on their ultimate diagnosis: the appendicitis group 
(AG, N = 115) and the non-appendicitis group (NAG, N = 188).

Final diagnoses were determined as follows: for patients who underwent surgical intervention, the diagnosis 
of appendicitis was confirmed through histopathological examination, which showed transmural infiltration by 
neutrophils in the appendix. For those who did not undergo surgery, a review of their medical records over a 
two-week period was conducted to establish a diagnosis. Patients who sought treatment at other facilities were 
contacted by telephone. Similarly, patients who were referred to other medical centers received follow-up calls 
to verify their diagnostic outcomes.

The AAS was selected for its superior performance in terms of the area under the receiver operating charac-
teristic curve (AUROC) compared with other traditional scoring systems in prior  research4,32. The criteria for 
the AAS included migratory pain to the right lower quadrant (RLQ) (2 points), direct RLQ tenderness (3 points 
for men and those over 50 years, 1 point for women aged 16–49 years), rebound tenderness (2 points for mild; 
4 points for moderate to severe), elevated white blood cell (WBC) count (1 point for 7.2 ≤ WBC < 10.9 [×  109/L]; 
2 points for 10.9 ≤ WBC < 14.0 [×  109/L]; 3 points for ≥ 14.0 [×  109/L]), and increased C-reactive protein (CRP) 
levels, with scores adjusted for symptom duration (< 24 h: 2 points for 4 ≤ CRP < 11; 3 points for 11 ≤ CRP < 25; 
5 points for 25 ≤ CRP < 83; 1 point for CRP ≥ 83, and for symptoms lasting ≥ 24 h: 2 points for 12 ≤ CRP < 152; 1 
point for CRP ≥ 152)13.

Data preprocessing and feature engineering
Before the development of the models, all variables, with the exception of age and the duration from onset of 
pain to CT scan, were converted into nominal categories to enhance their practicality and comprehensibility. The 
AutoGluon model utilizing only clinical findings incorporated 10 clinical and 4 laboratory variables as input. 
When integrating clinical and CT findings, the model included 10 clinical variables, 4 laboratory variables, and 8 
radiologic CT variables. Prior to the training phase for all algorithms, numerical data were standardized. One-hot 
encoding was used for handling categorical variables within the ML algorithms. A body temperature equal to 
or higher than 37.3 ℃ was classified as elevated. Laboratory reference values specific to our hospital were used, 
defining leukocytosis as a WBC count exceeding 10.3 (×  109/L), an elevated neutrophil count as above 80% of the 
total WBC count, and an elevated C-reactive protein (CRP) level as above 8 (mg/L). Additionally, an appendix 
diameter of 6 mm or more was considered significant.

In this study, the autofeat library was methodically utilized through three stages of the automatic feature engi-
neering process to generate a comprehensive set of features, encapsulating complex non-linear relationships and 
interactions between variables. This procedure was executed using the AutoFeatRegressor class, with the verbose 
parameter set to 1 to enable real-time progress logging. The feateng_steps parameter was adjusted to 3, facilitating 
in-depth feature engineering across three distinct steps. This methodology allows the model to efficiently identify 
and assimilate important non-linear patterns and interactions present within the data, thereby enhancing the 
accuracy of disease diagnosis and prediction, particularly within structured data environments. Such an approach 
markedly broadens its utility in medical data analysis. (Supplementary code) Datasets are available in the sup-
plementary information files. (Supplementary data and model information: Supplementary_model_information.
zip). The supplementary file “Supplementary_model_information.zip” contains a pkl file storing global variables 
from the model development phase, the dataset used, and detailed information about the AutoGluon model. The 
README.txt file within the zip file explains the usage instructions and important variables.

AutoML model development
In this study, we utilized AutoGluon, an advanced open-source AutoML framework developed by Amazon, to 
develop two models for diagnosing equivocal AA. The first model, named “AutoGluon-clinical,” was based solely 
on clinical findings, while the second model, “AutoGluon-clinical-CT,” integrated both clinical and CT findings. 
Several key factors justified the choice of AutoGluon:

(1) AutoGluon automates essential aspects of ML, such as data preprocessing, feature engineering, model 
selection, and hyperparameter tuning. This significantly reduces the time and effort required for model 
development, enabling researchers without extensive expertise in ML algorithms or coding to construct 
high-performance models.
(2) The AutoGluon framework is designed to achieve high predictive performance by leveraging advanced 
ensemble techniques and comprehensive model evaluation. These models are particularly suited for clinical 
settings where diagnostic accuracy is paramount. AutoGluon efficiently handles various data types, making 
it suitable for the complex and diverse datasets typically encountered in medical research. Furthermore, 
AutoGluon performed extensive hyperparameter optimization and model evaluation, training various algo-
rithms such as neural networks, random forests (RF), and gradient boosting, and combining them into a 
robust ensemble model. This approach maximized the predictive performance and generalization capability 
of the model.
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(3) AutoGluon’s automated approach to feature engineering, particularly through the use of the autofeat 
library, allows for the creation of sophisticated and non-linear features that can enhance model performance. 
This capability is crucial for capturing complex patterns and interactions within the data, thereby improving 
the accuracy and robustness of diagnostic models.

Prior to model development, we standardized numerical data and applied one-hot encoding to categori-
cal variables to ensure compatibility with ML algorithms. Additionally, clinical and laboratory variables were 
transformed into nominal categories to enhance practical applicability and comprehensibility. Specific pre-
processing steps included classifying body temperatures ≥ 37.3 ℃ as elevated, defining “leukocytosis” as a WBC 
count > 10.3 ×  109/L, marking neutrophil counts > 80% of total WBC count as elevated, considering CRP lev-
els > 8 mg/L as elevated, and treating an appendix diameter ≥ 6 mm as significant.

During the model development process, we used the TabularPredictor class from AutoGluon to build models 
optimized for tabular data analysis. The presets parameter was set to “best_quality” to leverage the most advanced 
modeling capabilities of the framework, and the auto_stack parameter was enabled to facilitate model stacking. 
Additionally, we used the autofeat library for automated feature engineering, which generates novel features by 
capturing complex non-linear relationships and interactions between variables. This process was conducted in 
three stages using the AutoFeatRegressor class, enhancing the model’s ability to detect intricate patterns within 
the data. The optimization process, by using the k-rule bootstrap aggregation algorithm with k values usually 
between 5 and  1029, aimed to improve the model’s generalizability and prevent overfitting, ensuring the experi-
mental results were both reliable and precise.

For the analysis, individual ML models, including logistic regression (LR), least absolute shrinkage and 
selection operator (LASSO) regression, ridge regression, support vector machine (SVM), decision tree (DT), 
RF, and extreme gradient boosting (XGBoost), were used. The implementation of these models was facilitated 
through specific R packages: “glmnet” for LR, LASSO, and ridge regression; “e1071” for SVM; “rpart” for DT; 
“randomForest” for RF; and “xgboost” for XGBoost.

The dataset was partitioned into training and test sets at a 7:3 ratio, comprising 213 individuals in the training 
set and 90 in the test set. The training set was dedicated to model training, while the test set was used to evaluate 
the model’s performance without modifying its parameters or effects. A tenfold cross-validation (k = 10) tech-
nique was applied within the training set to develop and gauge the performance of the ML models.

Evaluation of performance of autoML models, single ML model, and conventional scoring 
system
To determine the most effective modeling approach, the single ML model with the highest AUROC was identi-
fied. This model was subsequently compared with the AutoGluon-clinical model, AutoGluon-clinical-CT model, 
and AAS. A comprehensive assessment of each model’s performance was conducted using a range of established 
evaluation metrics, including AUROC, accuracy, sensitivity, specificity, positive predictive value (PPV), nega-
tive predictive value (NPV), and the F1 score. These metrics were calculated and depicted through AUROC. 
The development of the AutoGluon models was performed using Python version 3.10.13. For the comparative 
analysis of models based on probabilities derived from the AutoGluon models, the R software (version 4.4.1) 
and its packages, including caret, epiR, and pROC, were used.

Feature importance
To evaluate feature importance in the model, the feature_importance attribute of AutoGluon’s TabularPredictor 
was used, employing permutation importance. This method assesses the decrease in prediction performance 
of the model when the values of a single column are randomly shuffled row-wise. Features ranked highly in 
this assessment contribute significantly to the accuracy of AutoGluon. Features with non-positive importance 
scores contribute minimally to the model’s accuracy or may even detrimentally affect it if included in the dataset. 
Therefore, these scores do not explicitly reveal the directional impact of each feature on predictions. Assess-
ing the effect of each variable on the model’s accuracy is crucial. However, feature-importance scores provide 
insights into the importance of features. Although the absolute value of the importance score is significant, the 
contributions from variables should be evaluated in terms of their relative magnitudes. The resulting DataFrame 
includes the feature names (index), estimated importance scores (importance), standard deviations of the scores 
(stddev), p-values indicating the statistical significance of feature importance, number of estimations used for 
scoring (n), and percentiles defining confidence intervals (p95_high, p95_low).

Statistical analysis
For the development and evaluation of AutoML and autoFE models, Python version 3.10.13 was used along with 
AutoGluon (version 1.1.1) and autofeat (version 2.1.2). Single ML models were developed using R (version 4.4.1). 
The analyses were conducted on a computer system operating on Windows 11, powered by a 13th Generation 
Intel(R) Core(TM) i9-13900 K CPU, and equipped with an NVIDIA GeForce RTX 2080 Ti GPU. For continuous 
variables, descriptive statistics such as mean ± standard deviation or median (interquartile range) were reported, 
contingent upon the results of normality tests. Categorical data were presented as counts and percentages. 
Continuous data comparison between the appendicitis group (AG) and the non-appendicitis group (NAG) was 
conducted using the Mann–Whitney U test or the independent t-test, based on normal distribution analysis 
results. The chi-square test was applied to compare the distribution of categorical data between the two groups. 
Statistical significance was established at a P-value less than 0.05. Odds ratios and their 95% confidence intervals 
(CIs) were calculated using the R-package “stats.” ROC curves and AUROC analyses were performed using the 
R-package “pROC.” The optimal threshold for each model was determined using Youden’s index; the P values for 
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the AUROC were calculated using the bootstrap resampling method with 1000 replicates. Additionally, accuracy, 
sensitivity, specificity, PPV, NPV, and the F1 score were determined using the R-packages “caret” and “epiR.”

A prior study indicated that a sample size of 230 subjects was necessary to achieve a precision of 0.10 for 
either sensitivity or specificity, with an alpha error of 0.05 and a power of 80%, assuming a sensitivity of 82.0%, 
a specificity of 53.9%, and an incidence of appendicitis of 24.8% at a cut-off value for the  AAS4,32. In this study, 
a total sample size of 303 subjects was deemed sufficient to satisfy the desired statistical power requirements.

Results
General characteristics of enrolled patients
The patient demographics, clinical findings, radiologic CT findings, and evaluations using the conventional scor-
ing system (AAS) are detailed in (Table 1), presenting a comparative analysis across the total enrolled patients, 
training set, and test set. The median age among the NAG was 32 years (interquartile range [IQR]: 24–41), and 
in the AG, it was 35 years (IQR: 25–43). In the NAG, male patients constituted 61 (32.4%), and in the AG, 47 
(40.9%).

Significant differences were observed between the NAG and AG in terms of AAS scores  (85–10 vs.  119–14, 
p < 0.001). Additionally, statistically significant differences were noted in five clinical indicators (duration from 
pain to CT, migration to the right lower quadrant [RLQ], direct RLQ tenderness, guarding, and rebound tender-
ness), three laboratory findings (elevated white blood cell count, elevated neutrophil percentage, and abnormal 

Table 1.  Demographic and general characteristics. AAS adult appendicitis score, CRP C-reactive protein, CT 
computed tomography, AG appendicitis group, NAG non-appendicitis group, RLQ right lower quadrant, UA 
urine analysis, WBC white blood cell.

Total (n = 303) Train (n = 213) Test (n = 90)

NAG (n = 188) AG (n = 115) p NAG (n = 132) AG (n = 81) p NAG (n = 56) AG (n = 34) p

Age 32 (24, 41) 35 (25, 43) 0.366 32 (24, 42) 35 (25, 43) 0.375 32 (25, 42) 35 (25, 40) 0.819

Gender(M, n[%]) 61 (32.4) 47 (40.9) 0.173 35 (26.5) 32 (39.5) 0.067 26 (46.4) 15 (44.1)  > 0.999

Duration from pain to 
CT(min) 1617 (585, 3201) 760 (411, 1589)  < 0.001 1631 (572, 3481) 680 (378, 1519)  < 0.001 1417 (655, 3088) 879 (450, 2916) 0.166

Nausea, n(%) 92 (48.9) 48 (41.7) 0.271 63 (47.7) 36 (44.4) 0.745 29 (51.8) 12 (35.3) 0.192

Anorexia, n(%) 31 (16.5) 20 (17.4) 0.964 21 (15.9) 13 (16.0)  > 0.999 10 (17.9) 7 (20.6) 0.966

Migration, n(%) 37 (19.7) 47 (40.9)  < 0.001 29 (22.0) 33 (40.7) 0.006 8 (14.3) 14 (41.2) 0.009

Direct Tenderness on RLQ, 
n (%) 167 (88.8) 112 (97.4) 0.014 117 (88.6) 79 (97.5) 0.039 50 (89.3) 33 (97.1) 0.247

Guarding, n (%) 2 (1.1) 9 (7.8) 0.003 2 (1.5) 6 (7.4) 0.056 0 (0) 3 (8.8) 0.051

Rebound tenderness, n (%)  < 0.001  < 0.001 0.002

Absence 154 (81.9) 54 (47.0) 110 (83.3) 37 (45.7) 44 (78.6) 17 (50)

1 29 (15.4) 33 (28.7) 18 (13.6) 25 (30.9) 11 (19.6) 8 (23.5)

2 4 (2.1) 17 (14.8) 3 (2.3) 12 (14.8) 1 (1.8) 5 (14.7)

3 1 (0.5) 11 (9.6) 1 (0.8) 7 (8.6) 0 (0) 4 (11.8)

Body temperature (℃) 36.6 (36.5, 36.9) 36.6 (36.5, 37.0) 0.667 36.6 (36.5, 36.9) 36.6 (36.5, 37) 0.785 36.6 (36.5, 37.1) 36.8 (36.5, 37.0) 0.732

Fever, n (%) 28 (14.9) 16 (13.9) 0.947 20 (15.2) 12 (14.8)  > 0.999 10 (17.9) 4 (11.8)  > 0.999

WBC (×  109/L) 8.9 (6.6, 12.2) 12.1 (8.0, 14.5)  < 0.001 8.9 (6.7, 12.2) 12.7 (9.5, 15.6)  < 0.001 9.3 (6.5, 12.1) 9.2 (6.9, 13.8) 0.194

Leukocytosis, n (%) 64 (34.0) 70 (60.9)  < 0.001 46 (34.8) 53 (65.4)  < 0.001 18 (32.1) 17 (50) 0.144

Neutrophil (%) 68.2 (57.1, 79.6) 76.2 (63.4, 83.2)  < 0.001 67.6 (55.6, 79.2) 77.7 (66.0, 83.7)  < 0.001 70.4 (58.2, 79.8) 72.4 (62.2, 82) 0.196

Elevated neutrophil, n (%) 69 (36.7) 64 (55.7) 0.002 47 (35.6) 49 (60.5)  < 0.001 22 (39.3) 15 (44.1) 0.818

CRP (mg/L) 3.0 (1.0, 15.8) 2.3 (1.0, 12.7) 0.292 3.8 (1.0, 13.3) 3.6 (1.0, 12.9) 0.427 2.5 (1.0, 23.0) 1.2 (1.0, 7.8) 0.554

Elevated CRP, n (%) 66 (35.1) 37 (32.2) 0.691 42 (31.8) 23 (28.4) 0.709 24 (42.9) 14 (41.2)  > 0.999

Abnormal UA, n (%) 91 (48.4) 37 (32.2) 0.008 66 (50) 28 (34.6) 0.039 25 (44.6) 9 (26.5) 0.134

Dilated appendix, n (%) 125 (66.5) 107 (93.0)  < 0.001 86 (65.2) 75 (92.6)  < 0.001 39 (69.6) 32 (94.1) 0.013

Enhancement appendiceal 
wall, n (%) 122 (64.9) 79 (68.7) 0.579 81 (61.4) 54 (66.7) 0.526 41 (73.2) 25 (73.5)  > 0.999

Appendiceal wall thickening, 
n (%) 92 (48.9) 72 (62.6) 0.028 72 (54.5) 52 (64.2) 0.214 20 (35.7) 20 (58.8) 0.055

Intraluminal air, n (%) 70 (37.2) 29 (25.2) 0.042 47 (35.6) 24 (29.6) 0.454 23 (41.1) 5 (14.7) 0.017

Peri-appendiceal fat stranding, 
n (%) 21 (11.2) 16 (13.9) 0.598 16 (12.1) 13 (16) 0.545 5 (8.9) 3 (8.8)  > 0.999

Cecal wall thickening, n (%) 15 (8.0) 22 (19.1) 0.007 11 (8.3) 15 (18.5) 0.047 4 (7.1) 7 (20.6) 0.094

Peri-cecal lymph node, n (%) 59 (31.4) 57 (49.6) 0.002 45 (34.1) 44 (54.3) 0.006 14 (25) 13 (38.2) 0.275

Fluid-filled small bowel, n(%) 56 (29.8) 28 (24.3) 0.371 41 (31.1) 19 (23.5) 0.298 15 (26.8) 9 (26.5)  > 0.999

AAS score 8.0 (5.0, 10.0) 11.0 (9.0, 14.0)  < 0.001 7.0 (5.0, 10.0) 11.0 (9.0, 14.0)  < 0.001 8.5 (6.0, 10.0) 11.0 (8.0, 13.0) 0.003
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urinalysis), and five radiologic findings (appendix diameter, appendiceal wall thickening, intraluminal air, cecal 
apical thickening, and peri-cecal lymph node) with p < 0.001, p < 0.001, p = 0.014, p = 0.003, p < 0.001, p < 0.001, 
p < 0.001, p = 0.002, p = 0.008, p < 0.001, p = 0.028, p = 0.042, p = 0.007, and p = 0.002, respectively.

Of the 139 surgeries performed, 24 (17.3%) in the NAG were negative for appendicitis upon histological 
examination. The alternative diagnoses for those with a negative appendectomy included acute gastroenteritis 
(25.0%, n = 6), pelvic inflammatory disease (8.3%, n = 2), diverticulitis (8.3%, n = 2), appendiceal mucocele (8.3%, 
n = 2), mesenteric lymphadenopathy (12.5%, n = 3), and non-specific findings (37.6%, n = 9). Among the 164 
patients who did not undergo surgery, diagnoses included acute gastroenteritis (36.0%, n = 59), non-specific 
findings (31.7%, n = 52), pelvic inflammatory disease (17.1%, n = 28), mesenteric lymphadenopathy (6.1%, n = 10), 
diverticulitis (3.7%, n = 6), ovarian cystic rupture (2.4%, n = 4), acute pyelonephritis (1.8%, n = 3), and ureteric 
stones (1.2%, n = 2).

In the training set (n = 213) and test set (n = 90), the distributions of participants in the NAG and AG were 
132 (62.0%):81 (38.0%) and 56 (62.2%):34 (37.8%), respectively. The median ages in the training and test sets 
were 32 years (IQR: 24–42) and 32 years (IQR: 25–42), respectively, with males constituting 35 (26.5%) of the 
training set and 26 (46.4%) of the test set.

AutoGluon‑clinical, AutoGluon‑clinical‑CT, and single ML models
The evaluation of both AutoML models—AutoGluon-clinical and AutoGluon-clinical-CT—involved ranking 
according to their performance metrics, including the AUROC, accuracy, F1 score, recall, and precision, utilizing 
the test dataset as detailed in Supplementary Table S2. Table 2 highlights the top five models for both AutoGluon-
clinical and AutoGluon-clinical-CT, tailored for diagnosing equivocal AA. Notably, the leading AutoGluon-
clinical model, identified as “NeuralNetFastAI_r111_BAG_L1,” achieved the highest AUROC (0.785) on the 
leaderboard. In the AutoGluon-clinical-CT category, the model “NeuralNetFastAI_r143_BAG_L1” exhibited 
an AUROC of 0.886, indicating superior predictive capability. The NeuralNetFastAI_r143_BAG_L1 model was 
utilized for binary classification tasks. This model, which is of the StackerEnsembleModel type, primarily evalu-
ates using accuracy. The ensemble comprises eight child models of the NNFastAiTabularModel type and utilizes 
23 features, including demographic, clinical, and imaging parameters. These child models were trained with a 
variety of hyperparameters, commonly set to layers of sizes [200, 100, 50], an embedding dropout rate of 0.6239, 
a probability of 0.6708, a batch size of 1024, a learning rate of 0.0717, and a maximum of 39 epochs, with early 
stopping parameters set to a min delta of 0.0001 and patience of 20 epochs. This configuration enabled the model 
to effectively capture complex patterns in the data, contributing to its robust performance in the binary classifica-
tion task. Detailed information can be found in the supplementary file “Supplementary Best model information”. 
Additionally, in file model_information.zip, best model information can be accessed in “model_info.”

Among the single ML models evaluated, the ridge model recorded the highest AUROC, with a value of 0.852 
(CI: 0.774–0.930). The performance metrics for the remaining single ML models are summarized in Supplemen-
tary Table S3. The ridge models were selected for further comparative analysis against the conventional scoring 
system (AAS) and the respective AutoML models to assess their diagnostic efficacy.

Evaluative comparison between AutoGluon‑clinical, AutoGluon‑clinical‑CT models, single ML 
model, and conventional scoring systems
The test dataset’s performance metrics, including accuracy, sensitivity, specificity, PPV, NPV, F1 score, and 
AUROC, for the AutoGluon-clinical, AutoGluon-clinical-CT, ridge model, and the AAS in predicting equivo-
cal AA, are presented in (Table 3 and Fig. 2). The AAS demonstrated the lowest values in AUROC (0.687, with a 
95% CI of 0.573–0.800). The AUROC for the AutoGluon-clinical model, specifically the NeuralNetFastAI_r111_
BAG_L1, was 0.785 ((95% CI 0.684–0.887), whereas the ridge model, utilizing only clinical findings, recorded 
an AUROC of 0.755 (95% CI 0.649–0.861). The AutoGluon-clinical-CT model achieved an AUROC of 0.886 

Table 2.  Summary of the top five AutoML models for clinical and CT findings (AutoGluon-clinical-CT) and 
clinical findings alone (AutoGluon-clinical). AUROC area under the receiver operating characteristic curve.

Model AUROC Accuracy F1 score Recall Precision

AutoGluon-clinical-CT models

 NeuralNetFastAI_r143_BAG_L1 0.886 0.778 0.655 0.559 0.792

 NeuralNetFastAI_r160_BAG_L1 0.859 0.767 0.667 0.618 0.724

 ExtraTrees_r126_BAG_L1 0.850 0.744 0.582 0.471 0.762

 NeuralNetFastAI_r102_BAG_L1 0.850 0.767 0.677 0.647 0.710

 NeuralNetFastAI_BAG_L1 0.838 0.744 0.635 0.588 0.690

AutoGluon-clinical models

 NeuralNetFastAI_r111_BAG_L1 0.785 0.722 0.615 0.588 0.645

 NeuralNetFastAI_r11_BAG_L1 0.782 0.667 0.595 0.647 0.550

 NeuralNetFastAI_r194_BAG_L1 0.782 0.700 0.609 0.618 0.600

 NeuralNetFastAI_r100_BAG_L1 0.779 0.678 0.603 0.647 0.564

NeuralNetFastAI_r143_BAG_L1 0.778 0.767 0.667 0.618 0.724
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(95% CI 0.820–0.951). By contrast, the ridge model that included both clinical and CT findings had an AUROC 
of 0.852 (95% CI 0.774–0.930) with p = 0.029.

Feature importance
Feature importance evaluation in equivocal appendicitis was conducted using Autogluon’s “feature_impor-
tance” attribute, prioritizing variables based on both their importance and statistical significance, denoted by 
p-values rounded to three decimal places. If the importance value is positive, the variable is considered to 
improve the model’s performance, whereas a negative importance value indicates that the variable decreases 
the model’s performance. It is important to consider the relative magnitude of importance values rather than 
solely focusing on the absolute significance indicated by p-values. Notably, the newly engineered variable 
exp(-(Duration from pain to CT)3 + rebound tenderness) (importance = 0.047, p < 0.001), appendix diameter 
(importance = 0.049, p-value = 0.001), age (importance = 0.013, p-value = 0.002), peri-cecal lymph node (impor-
tance = 0.016, p-value = 0.002), RLQ migration (importance = 0.027, p-value = 0.005), cecal wall thickening 
(importance = 0.013, p-value = 0.016), Intraluminal air (importance = 0.024, p-value = 0.015), nausea (impor-
tance = 0.013, p-value = 0.035), and appendiceal wall thickening (importance = 0.013, p-value = 0.035) emerged 
as top contributors. Detailed results for each variable are provided in Table S4, with relative differences visualized 
in Fig. 3 to facilitate comparative analysis.

Table 3.  Performance metrics of the AutoGluon-clinical, AutoGluon-clinical-CT, ridge regression model, 
and AAS. AAS adult appendicitis score, AUROC area under the receiver operating characteristic curve, CI 
confidence interval, CT computed tomography, NPV negative predictive value, PPV positive predictive value.

Model AUROC (95% CI) P-value Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) Accuracy (95% CI) F1 score

NeuralNetFastAI_
r143_BAG_L1 
(AutoGluon-clinical-
CT)

0.886 (0.82–0.951) Reference 0.882 (0.725–0.967) 0.768 (0.636–0.87) 0.811 (0.715–0.886) 0.698 (0.539–0.828) 0.915 (0.796–0.976) 0.779

Ridge regression 
(clinical + CT) 0.852 (0.774–0.93) 0.029 0.912 (0.763–0.981) 0.679 (0.54–0.797) 0.767 (0.666–0.849) 0.633 (0.483–0.766) 0.927 (0.801–0.985) 0.747

NeuralNetFastAI_
r111_BAG_L1 
(AutoGluon-clinical)

0.785 (0.684–0.887) 0.023 0.559 (0.379–0.728) 0.946 (0.851–0.989) 0.8 (0.702–0.877) 0.864 (0.651–0.971) 0.779 (0.662–0.871) 0.679

Ridge regression 
(clinical) 0.755 (0.649–0.861) 0.002 0.647 (0.465–0.803) 0.786 (0.656–0.884) 0.733 (0.63–0.821) 0.647 (0.465–0.803) 0.786 (0.656–0.884) 0.647

AAS 0.687 (0.573–0.8)  < 0.001 0.647 (0.465–0.803) 0.696 (0.559–0.812) 0.678 (0.571–0.772) 0.564 (0.396–0.722) 0.765 (0.625–0.872) 0.603

Fig. 2.  Receiver operating characteristic (ROC) curve and area under the ROC curve (AUROC). Comparisons 
between the AutoGluon-clinical-CT model and the ridge model with clinical and CT findings. The solid line 
represents the AutoGluon-clinical-CT model named NeuralNetFastAI_r143_BAG_L1 exhibiting an AUROC of 
0.886 (95% confidence interval: 0.850–0.951). The dashed line illustrates the ridge regression model utilizing a 
single set of clinical and CT findings, with an AUROC of 0.852 (95% confidence interval: 0.774–0.930).
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Discussion
In this study, equivocal AA was defined as a condition in patients who underwent CT imaging for AA differ-
entiation and were subsequently diagnosed with definitive AA following surgery, despite having equivocal CT 
findings. The presence of ambiguous cases, even with the use of a powerful diagnostic tool such as CT, presents 
a challenging and undesirable situation for clinicians and patients, particularly true for a disease that, although 
rare, can lead to critical outcomes. Our research aimed to enhance diagnostic accuracy for equivocal AA by using 
DDSS using AutoML techniques (AutoGluon, autofeat). Notably, this study conducted analyses using only clini-
cal findings and in conjunction with CT findings, subsequently assessing the accuracy of each model. This dual 
approach not only highlights the versatility of the diagnostic process but also suggests the potential for imple-
menting DDSS in various contexts. Given that CT findings are not always interpreted in isolation, this approach 
maintains the potential for applying DDSS under any circumstances. This flexibility ensures that the developed 
models can be adapted and applied in a manner that is consistent with the real-world complexities of medical 
diagnostics. The results demonstrated that the AutoGluon-clinical-CT model, which combines clinical and CT 
findings, achieved a higher diagnostic performance, with an AUROC of 0.886, compared with single-modality 
models and models using only clinical findings with statistically significance. To the best of our knowledge, this 
is the first study to incorporate AutoML and automatic feature engineering techniques to leverage clinical or CT 
findings for diagnosing equivocal AA.

In literature, cases of ambiguous findings on CT scans were reported in 10% (10 out of 100) of  patients33,34, 
9.2% (37 out of 401)35, 7% (19 out of 261)36, and 13.1% (176 out of 1344)7. The incidence of AA, characterized by 
ambiguous CT findings, has been reported as follows: 50% (5 out of 10)33,34, 73% (14 out of 19)36, 41% (15 out of 
37)35, 30% (53 out of 176)7, 33% (80 out of 244)4, 23% (27 out of 115)10, and 30% (31 out of 103)6. In our study, 
the rate was found to be 40% (115 out of 303). Upon analysis, the observations reveal that while ambiguous CT 
scan findings are present in 7–13.1% of cases, among these, the incidence of being diagnosed with equivocal AA 
falls within the range of approximately 23–73%. In previous research, AAS, originally designed for definitive 
AA, demonstrated an AUROC of 0.749 (95% CI: 0.690–0.802), indicating reduced performance in equivocal AA 
cases compared to its intended use for definitive AA. Despite this, AAS outperformed other conventional scoring 
systems for definitive AA that have been evaluated, including the Alvarado score and Eskelinen  score4. Given the 
imperative for clinicians to make expert medical decisions that lead to accurate diagnoses for the best clinical 
 outcomes37, the application of DDSS is considered essential for improving accuracy in the diagnosis of equivocal 
AA. In previous research utilizing conventional ML techniques for equivocal AA, the DT model with only the 
training set reported an AUROC of 0.850 (95% CI 0.799–0.893)4. Although not using ML techniques, another 
study that predicted outcomes based on a combination of the Alvarado score and CT findings reported that an 
appendiceal wall thickness of ≥ 2 mm and an Alvarado score of ≥ 7 were independent predictors of appendicitis, 

Fig. 3.  Feature importance. exp(-(Pain_CT Interval)3 + RT) means exp(-Duration from pain to  CT3 + rebound 
tenderness). Pain_CT Interval means duration from pain to CT. Coefficients with their importance values 
and statistically significant p-values (p < 0.05): appendix diameter (0.049, p = 0.0015), exp(-Duration from 
pain to  CT3 + rebound tenderness) (0.047, p = 0.00018), migration (0.027, p = 0.0046), Intraluminal air (0.024, 
p = 0.0147), peri-cecal lymph node (0.016, p = 0.0023), cecal wall thickening (0.013, p = 0.0163), age (0.013, 
p = 0.0019), appendiceal wall thickening (0.013, p = 0.0352), and nausea (0.013, p = 0.0352). Detailed information 
is presented in Supplementary (Table S4).
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with adjusted odds ratios of 2.76 (95% CI, 1.09–7.02) and 1.47 (95% CI 1.12–1.94),  respectively6. The outcomes 
of this study, using AutoML and AutoFE, produced a model that outperformed those in previous studies.

Despite the advantages of DDSS and AutoML, as demonstrated by our study’s results, their widespread 
impact remains limited due to negative perceptions and biases from physicians, accuracy issues due to data 
gaps, system integration challenges that requires manual data entry, complexity, and the opaque nature of “black 
box”  models20,38,39. In this study, we addressed the diagnosis of equivocal AA, a condition that, although rare in 
occurrence, poses a significant risk of leading to critical outcomes. The AutoGluon framework provides feature 
importance. In our study, the statistically significant factors were appendix diameter, exp(-(duration from pain 
to CT)3 + rebound tenderness), RLQ migration, intraluminal air, peri-cecal lymph node, age, cecal wall thick-
ening, nausea, and appendiceal wall thickening. The variables used in this study are composed of factors that 
have already been shown in other studies to aid in the diagnosis of definitive  AA10,13–16; it is extremely likely that 
these factors also help in diagnosing equivocal AA. For instance, intraluminal air strongly suggests a normal 
 appendix10. Although its significance has been debated, appendix diameter is generally recognized as a factor 
in diagnosing  AA6,10. In one study on equivocal AA, the appendix diameter was larger in the AA group but did 
not play a decisive role in prediction; appendiceal wall thickening improved diagnostic  accuracy6. The variable 
exp(-(duration from pain to CT)3 + rebound tenderness), newly derived from autoFE, takes the negative of the 
duration from pain to CT and adds the rebound tenderness value. Equivocal AA is occasionally considered early-
stage  AA5,6,10,16. Therefore, assuming AA progresses over time, the duration from pain to CT could influence 
the model. Moreover, rebound tenderness is a symptom of peritoneal irritation that appears as AA progresses. 
Because the new variable considers both the effect of time and the signs that may appear over time, its interpre-
tation leads to plausible speculation. When the time is short, the value of “duration from pain to CT” is small, 
resulting in a larger negative value for -(duration from pain to CT)3. If the rebound tenderness value is also small, 
the overall value of the expression “exp(-(duration from pain to CT)3 + rebound tenderness)” remains large due 
to the properties of the exponential function. Consequently, this suggests that the likelihood of equivocal AA 
occurring is higher when the time is short. However, because this is an artificial interpretation of the variables 
already selected by the model, it should not be generalized. Further studies on the influencing factors should 
be conducted separately, particularly as the feature-importance scores provided by AutoGluon do not explicitly 
reveal the directional impact of each feature on predictions. Thus, studies should be conducted not only on the 
influence of the factors but also on their directional impact. To facilitate the successful implementation of DDSS 
for this challenging diagnosis, we adopted the following methodology: 1) We used information readily avail-
able from Electronic Medical Records, categorizing it into normal/abnormal states to construct a workflow that 
leverages tabular data in a tabular form, rendering it easily interpretable. 2) Furthermore, we used the use of 
AutoML (AutoGluon), to simplify the implementation of tabular data and reduce the traditional manual itera-
tive processes. AutoGluon Tabular, a component of the AutoGluon suite, is designed for predictive modeling of 
tabular data. This framework automatically classifies problem types and performs data regression from structured 
format  files40. AutoGluon boasts a diverse algorithmic arsenal, encompassing neural networks, random forest, 
extreme random trees, K-nearest neighbors, CatBoost, and LightGBM. Unlike conventional ML that uses a sin-
gle model, it further harnesses ensemble learning techniques to amplify prediction  accuracy29. In conventional 
deep learning processes, several single models such as those used in this study are selected and evaluated. To 
improve performance, hyperparameters are adjusted and multiple experiments are conducted. To achieve even 
higher performance, data analysts typically perform feature selection based on statistical methods. Subsequently, 
to develop an ensemble model with higher performance, an ensemble method is selected and experiments are 
conducted while changing hyperparameters. This process is labor-intensive, rendering exploring all possible 
models and hyperparameter adjustments difficult; the process can result in missing potential optimal solutions 
and introducing human errors. However, AutoML automates these processes, reducing the human resources 
required for model search, tuning, optimization, and hyperparameter adjustments and also minimizes the risk 
of missing optimal solutions and introducing human errors. In our study, AutoGluon evaluated and presented 
approximately 111 ensemble models with simple code. This phenomenon demonstrates that even when excluding 
data preprocessing and feature selection, the accessibility of model optimization is high. This accessibility not 
only applies to model optimization but also provides a comfortable approach for clinicians without extensive 
knowledge of code, algorithms, or hyperparameters. Additionally, the hyperparameter optimization algorithms 
and data processing methods used by AutoML are documented, clearly revealing the major factors affecting 
research results and enhancing the understanding of why the model behaves in certain ways. This easy approach 
can identify models that achieve superiority or non-inferiority. In this study, we found models that achieved 
superiority among many ensemble models. This approach effectively lowers the barrier to entry for clinicians 
and data scientists alike. 3) Additionally, through AutoFE, we could generate latent features, thereby creating 
the most performant predictive model as evidenced by our research findings. By automating the identification 
and creation of impactful features, AutoFE significantly enhances model performance, transforming raw data 
into a dataset that is far more conducive to effective learning and  prediction30,41.

This study represents a significant advancement in the field of medical diagnostics for AA, particularly in cases 
with equivocal CT findings. Unlike studies that primarily focus on definitive AA and do not focus on equivocal 
AA, this study uniquely employed AutoML and AutoFE to diagnose equivocal AA by integrating both clinical 
findings and CT interpretations. We have directly addressed three critical areas of contribution that set our work 
apart from existing literature. First, we provided robust evidence for the diagnosis of AA under uncommon 
conditions, where conventional diagnostic tools could be ineffective due to ambiguity in clinical presentations 
and imaging results. Second, this study uniquely integrated clinical findings with CT interpretations, employing 
a comprehensive approach not widely explored in previous studies. This integration harnesses the strengths of 
both diagnostic methods, providing a nuanced and accurate diagnostic tool for clinicians. Influential factors 
were identified by leveraging the “feature_importance” attribute of AutoGluon, addressing concerns about the 
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transparency of AutoML. Third, by utilizing AutoML techniques through AutoGluon and autofeat, we introduced 
a methodology that simplifies the complex data analysis process. This approach not only enhances diagnostic 
accuracy but also makes cutting-edge diagnostic tools accessible and user-friendly for clinicians across various 
healthcare environments. Unlike conventional methods that require extensive manual input and expertise, our 
automated approach significantly reduces the time and effort required for accurate diagnosis. We anticipate 
that this framework will encourage research in the medical field, particularly in utilizing tabular data, which is 
commonly used in medical practice, enhancing the accuracy and efficiency of diagnoses across various condi-
tions. These contributions emphasize the potential of our methodology to significantly impact clinical practice 
by improving the accuracy of AA diagnoses, thereby reducing the risk of adverse outcomes for patients with 
this condition.

However, our research has certain limitations. Notably, our study did not address the transparency issues 
commonly associated with DDSS and AI-based models, including the provision of explanations for their deci-
sions. The complexity introduced by feature engineering through AutoFE, which has been recognized for its 
performance across various  domains29,30,40–42, can limit the DDSS applicability in this study. Nevertheless, we 
made a strategic decision to prioritize enhancing diagnostic capabilities in ambiguous situations as a counter-
measure to these limitations. Additionally, despite focusing on equivocal AA, the limited number of cases and 
the retrospective nature of our study pose challenges to generalization. Further research incorporating a larger 
number of cases is essential. We did not conduct an interobserver correlation study for CT findings, which could 
affect the generalizability of diagnostic interpretations due to potential variability among observers. This is con-
sidered a significant shortcoming of our study. However, the impact of interobserver variance is presumed to be 
minimal, given the involved radiologist’s extensive experience of over 15 years. Further research that includes 
interobserver correlation is necessary. Future studies should aim to automatically generate tabular data forms 
from Electronic Medical Records in real-world settings and use this tabular data to facilitate the implementation 
of an easily accessible AutoML-based DDSS workflow.

Conclusion
Our study highlights the potential benefits of using AutoML via AutoGluon and autoFE via autofeat in diagnos-
ing equivocal AA. By combining CT findings with clinical data, we achieved improved diagnostic accuracy, 
demonstrating a promising application of ML in medical diagnostics. These results suggest that integrating 
autoML tools could enhance clinical decision-making and reduce misdiagnosis and unnecessary surgeries. In the 
future, the exploration of diverse AutoML platforms and the inclusion of a broader spectrum of diagnostic data 
represent crucial steps toward realizing the potential of ML in healthcare. Addressing the challenges of model 
transparency and interpretability will also be vital in facilitating the adoption of these technologies in clinical 
practice. Our work lays the groundwork for future studies that aim to refine, validate, and implement AI-driven 
diagnostic tools, promising significant contributions to patient care and outcomes.

Data availability
Data is provided within supplementary information files. The data provided in this study are available only for the 
purpose of verification and cannot be used for any publication or other related activities without prior permis-
sion. Any other use of the data must be reviewed and approved by the Institutional Review Board (IRB) of our 
institution. The file session_variables_240628_886_ag111_seed42.pkl can be found within the Supplementary_
model_information.zip file. For detailed information about the structure of the session_variables_240628_886_
ag111_seed42.pkl file, please refer to the README.txt file included in the zip archive. The global variables include 
datasets as follows: train, representing the training dataset with dimensions 213 × 26, and test, representing the 
test dataset with dimensions 90 × 26, both provided in a dataframe format.

Code availability
Supplementary code.

Received: 6 April 2024; Accepted: 11 September 2024

References
 1. Chhabra, K. R., Sacks, G. D. & Dimick, J. B. Surgical decision making: challenging dogma and incorporating patient preferences. 

JAMA 317, 357–358 (2017).
 2. Latifi, R. Surgical decision-making process: more questions than answers. Scand. J. Surg. 102, 139–140 (2013).
 3. Vadeboncoeur, T. F., Heister, R. R., Behling, C. A. & Guss, D. A. Impact of helical computed tomography on the rate of negative 

appendicitis. Am. J. Emerg. Med. 24, 43–47 (2006).
 4. Kang, H. J. et al. Evaluation of the diagnostic performance of a decision tree model in suspected acute appendicitis with equivocal 

preoperative computed tomography findings compared with Alvarado, Eskelinen, and adult appendicitis scores: a STARD compli-
ant article. Medicine 98, e17368 (2019).

 5. Lastunen, K. S., Leppäniemi, A. K. & Mentula, P. J. DIAgnostic iMaging or observation in early equivocal appeNDicitis (DIA-
MOND): open-label, randomized clinical trial. Br. J. Surg. 109, 588–594 (2022).

 6. Krisem, M., Jenjitranant, P., Thampongsa, T. & Wongwaisayawan, S. Appendiceal wall thickness and alvarado score are predictive 
of acute appendicitis in the patients with equivocal computed tomography findings. Sci. Rep. 13, 998 (2023).

 7. Daly, C. P. et al. Incidence of acute appendicitis in patients with equivocal CT findings. AJR Am. J. Roentgenol. 184, 1813–1820 
(2005).

 8. Levine, C. D., Aizenstein, O., Lehavi, O. & Blachar, A. Why we miss the diagnosis of appendicitis on abdominal CT: evaluation of 
imaging features of appendicitis incorrectly diagnosed on CT. AJR Am. J. Roentgenol. 184, 855–859 (2005).

 9. Webb, E. M. et al. The equivocal appendix at CT: prevalence in a control population. Emerg. Radiol. 17, 57–61 (2010).



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:22658  | https://doi.org/10.1038/s41598-024-72889-9

www.nature.com/scientificreports/

 10. Kim, H. C., Yang, D. M., Kim, S. W. & Park, S. J. Reassessment of CT images to improve diagnostic accuracy in patients with 
suspected acute appendicitis and an equivocal preoperative CT interpretation. Eur. Radiol. 22, 1178–1185 (2012).

 11. Pati, A., Parhi, M. & Pattanayak, BK. An ensemble approach to predict acute appendicitis. In: 2022 International Conference on 
Machine Learning, Computer Systems and Security (MLCSS) p. 183–8 (IEEE, 2022).

 12. Park, S. Y. & Kim, S. M. Acute appendicitis diagnosis using artificial neural networks. Technol. Health Care 23, S559–S565 (2015).
 13. Sammalkorpi, H. E., Mentula, P. & Leppäniemi, A. A new adult appendicitis score improves diagnostic accuracy of acute appen-

dicitis—A prospective study. BMC Gastroenterol. 14, 114 (2014).
 14. Alvarado, A. A practical score for the early diagnosis of acute appendicitis. Ann. Emerg. Med. 15, 557–564 (1986).
 15. Erdem, H. et al. Alvarado, Eskelinen, Ohhmann and Raja Isteri Pengiran Anak Saleha appendicitis scores for diagnosis of acute 

appendicitis. World J. Gastroenterol. 19, 9057–9062 (2013).
 16. Sutton, R. T. et al. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit. Med. 3, 

17 (2020).
 17. Fralick, M., Colak, E. & Mamdani, M. Machine learning in medicine. N. Engl. J. Med. 380, 2588–2589 (2019).
 18. Ferreira, L., Pilastri, A., Martins, C., Santos, P. & Cortez P. A scalable and automated machine learning framework to support 

risk management. In: Rocha AP, Steels L, van den Herik J, editors. International Conference on Agents and Artificial Intelligence. 
ICAART 2020. Lecture Notes in Computer Science, p. 291–307, (Springer, 2021).

 19. Celik, B. & Vanschoren, J. Adaptation strategies for automated machine learning on evolving data. IEEE Trans. Pattern. Anal. 
Mach. Intell. 43, 3067–3078 (2021).

 20. Azevedo, K., Quaranta, L., Calefato, F. & Kalinowski, M. A multivocal literature review on the benefits and limitations of automated 
machine learning tools. ArXiv https:// doi. org/ 10. 48550/ arXiv. 2401. 11366 (2024).

 21. Luo, S. & Kindratenko, V. Hands-on with IBM visual insights. Comput. Sci. Eng. 22, 108–112 (2020).
 22. Faes, L. et al. Automated deep learning design for medical image classification by health-care professionals with no coding experi-

ence: a feasibility study. Lancet Digit. Health 1, e232–e242 (2019).
 23. Krauß, J., Pacheco, B. M., Zang, H. M. & Schmitt, R. H. Automated machine learning for predictive quality in production. Procedia 

CIRP 93, 443–448 (2020).
 24. Mijwil, M. M. & Aggarwal, K. A diagnostic testing for people with appendicitis using machine learning techniques. Multimed. 

Tools Appl. 81, 7011–7023 (2022).
 25. Katiyanont, A., Jaroensutasinee, K. & Jaroensutasinee, M. Machine learning for diagnosis of acute abdominal pain in adults at 

Suratthani hospital. Int. J. Adv. Sci. Eng. Technol. 7, 65–71 (2019).
 26. Rajpurkar, P. et al. AppendiXNet: deep learning for diagnosis of appendicitis from a small dataset of CT exams using video pre-

training. Sci. Rep. 10, 3958 (2020).
 27. Akmese, O. F., Dogan, G., Kor, H., Erbay, H. & Demir, E. The use of machine learning approaches for the diagnosis of acute 

appendicitis. Emerg. Med. Int. 2020, 7306435 (2020).
 28. Su, D. et al. Prediction of acute appendicitis among patients with undifferentiated abdominal pain at emergency department. BMC 

Med. Res. Methodol. 22, 18 (2022).
 29. Lin, C. et al. Prediction of compressive strength and elastic modulus for recycled aggregate concrete based on AutoGluon. Sustain-

ability 15, 12345 (2023).
 30. Horn, F., Pack, R. & Rieger, M. The autofeat python library for automated feature engineering and selection. In Machine Learning 

and Knowledge Discovery in Databases (eds Cellier, P. & Driessens, K.) (Springer, 2020).
 31. Collins GS, Reitsma JB, Altman DG, Moons KG; TRIPOD Group. Transparent reporting of a multivariable prediction model for 

individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. The TRIPOD Group. Circulation. 131:211–9, (2015).
 32. Chae, M. S. et al. Can clinical scoring systems improve the diagnostic accuracy in patients with suspected adult appendicitis and 

equivocal preoperative computed tomography findings?. Clin. Exp. Emerg. Med. 4, 214–221 (2017).
 33. Balthazar, E. J., Megibow, A. J., Siegel, S. E. & Birnbaum, B. A. Appendicitis: prospective evaluation with high-resolution CT. 

Radiology 180, 21–24 (1991).
 34. Balthazar, E. J. et al. Acute appendicitis: CT and US correlation in 100 patients. Radiology 190, 31–35 (1994).
 35. Peck, J., Peck, A., Peck, C. & Peck, J. The clinical role of noncontrast helical computed tomography in the diagnosis of acute 

appendicitis. Am. J. Surg. 180, 133–136 (2000).
 36. Weyant, M. J. et al. Interpretation of computed tomography does not correlate with laboratory or pathologic findings in surgically 

confirmed acute appendicitis. Surgery 128, 145–152 (2000).
 37. Thammasitboon, S. & Cutrer, W. B. Diagnostic decision-making and strategies to improve diagnosis. Curr. Probl. Pediatr. Adolesc. 

Health Care 43, 232–241 (2013).
 38. Berner, E. S. Diagnostic decision support systems: why aren’t they used more and what can we do about it?. AMIA Annu. Symp. 

Proc. 2006, 1167–1168 (2006).
 39. Segal, M. M. et al. Experience with integrating diagnostic decision support software with electronic health records: benefits versus 

risks of information sharing. EGEMS 5, 23 (2017).
 40. Qi, W., Xu, C. & Xu, X. AutoGluon: a revolutionary framework for landslide hazard analysis. Nat. Hazards Res. 1, 103–108 (2021).
 41. Verghese DC, Arshu M, Subin T. Autofhm: a python library for automated machine learning. In: 2021 Third International Confer-

ence on Inventive Research in Computing Applications (ICIRCA). p. 860–7, (IEEE, 2021)
 42. Ikemura, K. et al. Using automated machine learning to predict the mortality of patients with COVID-19: prediction model 

development study. J. Med. Internet Res. 23, e23458 (2021).

Acknowledgements
This work was supported by ETRI grant funded by the Korean government (24ZD1120, Regional Industry IT 
Convergence Technology Development and Support Project).

Author contributions
Dr. Juho An: Checked missing data, reviewed the collected data and played a crucial role in drafting the manu-
script and interpreting the observational data. Dr. Il seok Kim: Was instrumental in formulating the research 
questions and objectives, revising the manuscript, and providing critical clinical insights. Kwang-Ju Kim, PhD: 
Conducted statistical analyses, drafted significant portions of the manuscript, and ensured adherence to obser-
vational study methodologies. Ji Hyun Park, MS: Assisted in data curation and played a significant role in the 
primary data analysis, ensuring the integrity and accuracy of the data. Hyuncheol Kang, PhD: Supervised the 
retrospective data extraction process, ensured data quality, and was instrumental in the alignment of the study 
with observational research standards. Dr. Hyuk Jung Kim: Data collection, assisted in patient data identification, 
validated the clinical relevancy of the findings, and contributed to the manuscript’s clinical sections. Dr. Young 
Sik Kim: Engaged in the review of observational findings, contributed expert knowledge on clinical implications, 
and played a role in manuscript finalization. Dr. Jung Hwan Ahn: Served as corresponding author, assuming 

https://doi.org/10.48550/arXiv.2401.11366


13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:22658  | https://doi.org/10.1038/s41598-024-72889-9

www.nature.com/scientificreports/

overall responsibility for the research direction, ensuring the study’s robustness, and providing final approval for 
the manuscript’s content. Juho An and Il Seok Kim contributed equally to this work.

Declarations 

Competing interests 
The authors declare no competing interests.

Ethics approval 
Approval from the Institutional Review Board (IRB no. AJOUIRB-MDB-2021-291).

Consent to participate 
Informed consent was waived for the current research because it is a retrospective study.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 72889-9.

Correspondence and requests for materials should be addressed to J.H.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and 
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ 
licen ses/ by- nc- nd/4. 0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-72889-9
https://doi.org/10.1038/s41598-024-72889-9
www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Efficacy of automated machine learning models and feature engineering for diagnosis of equivocal appendicitis using clinical and computed tomography findings
	Methods
	Study design
	Enrolled patients
	Imaging methods and interpretation
	Clinical data and conventional scoring system (AAS)
	Data preprocessing and feature engineering
	AutoML model development
	Evaluation of performance of autoML models, single ML model, and conventional scoring system
	Feature importance
	Statistical analysis

	Results
	General characteristics of enrolled patients
	AutoGluon-clinical, AutoGluon-clinical-CT, and single ML models
	Evaluative comparison between AutoGluon-clinical, AutoGluon-clinical-CT models, single ML model, and conventional scoring systems
	Feature importance

	Discussion
	Conclusion
	References
	Acknowledgements


