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Abstract: The water distribution in human osteoarthritic articular cartilage 
has been quantitatively characterized using terahertz time-domain 
spectroscopy (THz TDS). We measured the refractive index and absorption 
coefficient of cartilage tissue in the THz frequency range. Based on our 
measurements, the estimated water content was observed to decrease with 
increasing depth cartilage tissue, showing good agreement with a previous 
report based on destructive biochemical methods. 
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1. Introduction 

Osteoarthritis (OA), one of the most prevalent chronic diseases in the elderly, is characterized 
by progressive degeneration of cartilage. Cartilage degeneration is affected by biochemical 
alterations, including an increase in water content and the loss of proteoglycans [1–3]. Several 
studies have shown that the water content in osteoarthritic cartilage may increase by about 
10% [4]. Therefore, a precise measurement of the water content in cartilage can aid in the 
diagnosis of early-stage OA. However, changes in the water content in the early stages of OA 
cannot be detected using current clinical techniques such as radiography and arthroscopy. 
Only magnetic resonance imaging (MRI) has been used for the detection of water content in 
the early stages of OA [5,6]. 

Terahertz time-domain spectroscopy (THz TDS) has recently been developed because of 
recent advances in THz technology. THz TDS is a coherent and non-ionizing method that can 
quantify the complex refractive index from both the phase and amplitude information of a 
medium [7–9]. Moreover, this method can also probe low frequency vibrational modes of 
biomolecules, thus providing structural and functional information about biological tissue 
[10]. Because water has strong absorptions across the entire THz frequency range, THz 
images will likely show a good image contrast dependent on the changes in medium water 
content. This enables THz TDS to be used for spectroscopic investigation of a biological 
medium. 

To date, several biological tissues have been examined using this technique. For instance, 
characterization of human dental tissues [11], basal cell carcinoma from both ex vivo and in 
vivo samples [12,13], and human cortical bone [14] has been reported. More recently, human 
breast tumors [15] and micro-metastic lymph nodes [16] have been successfully investigated 
using THz TDS although the clinical application of THz TDS has not been demonstrated due 
to the high water absorption. However, no literature is available on the quantitative analysis of 
human articular cartilage in the THz region. Only THz reflection images of rabbit cartilage 
have been reported [17]. Here we report on the THz characterization of water distribution in 
human articular cartilage. 

2. Materials and methods 

Human osteoarthritic articular cartilage tissues were obtained from the Department of 
Orthopedic Surgery at Ajou University Hospital, Korea. The tissue diagnosed as OA was 
excised from a patient after total knee joint replacement. Appropriate consent was obtained 
for the measurements and all materials were returned to the Ajou University Hospital for 
disposal after the measurements. The articular surface of the cartilage tissue was visually 
intact. Using a razor blade, the excised cartilage tissue was cut into a slice (622 ± 30 µm) to 
study the depth information from the articular surface to the subchondral bone, as depicted in 
Fig. 1(a), where the thickness was measured by a digital thickness gauge with an accuracy of 
1 µm. The sliced cartilage was placed on a 150-µm-thick glass slide and covered with a 10-
µm-thick film of low density polyethylene (LDPE) to prevent desiccation (Fig. 1(b)). 

The experimental setup was based on a conventional TDS system with transmission 
geometry. The THz pulse was generated by an InAs wafer pumped by a Ti:sapphire laser with 
a center wavelength of 790 nm, a pulse width of 100 fs, and a repetition rate of 80 MHz. The  
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Fig. 1. (a) Optical image of human articular cartilage tissue. (b) Schematic of reference and 
cartilage samples. 

generated THz pulse was collimated and focused by off-axis parabolic mirrors. The cartilage 
sample was placed at the THz beam waist and moved on a motorized stage between two off-
axis parabolic mirrors. The focal length of a set of off-axis parabolic mirrors was 5 cm. The 
scanned area was 3.5 × 2 mm2, and the scanning steps of the horizontal (x) and vertical (y) 
directions were 0.3 and 1 mm, respectively. The transmitted THz signal was detected by a 
photoconductive antenna fabricated on a low-temperature grown GaAs using standard optical 
gating and phase-sensitive detection techniques. 

3. Results and discussion 

Figure 2 shows the THz pulse signals and amplitude spectra with and without cartilage tissue 
with the transmitted THz pulses recorded at the center of cartilage sample (x = 1.0 and y = 1.0 
mm). The transmitted THz pulse for the cartilage sample was significantly attenuated by 
absorption and Fresnel loss, and was ~10 times smaller than that of the reference signal. As a 
THz pulse propagates through an absorptive medium, such as a biological medium, the pulse 
width broadens due to the dispersion. The spectral amplitude transmitted through the cartilage 
tissue was found to be reduced over the entire THz frequency range (Fig. 2(b)). 

Figure 3 shows the frequency-dependent refractive indices and absorption coefficients of 
cartilage tissue along its depth. The dotted lines indicate the refractive index and absorption 
coefficient of pure water, as reported in Ref. [18]. The refractive index and absorption 
coefficients near the articular surface were not included in Fig. 3 because of the diffraction 
effect at the edge of the sample. Over the entire frequency range, the refractive indices and  

  

0.2 0.4 0.6 0.8 1.0 1.2 1.4

10
-5

10
-4

10
-3

10
-2

T
ra

n
s
m

it
te

d
 a

m
p

lit
u

d
e

 (
a

. 
u

.)

Frequency (THz)

 Reference

 Cartilage 

0 5 10 15 20 25 30 35

-4

-2

0

2

4

T
H

z
 s

ig
n

a
l 
(n

A
)

Time (ps)

 Reference

 Cartilage(x10)

(a) (b)  

Fig. 2. THz signals and transmitted amplitudes of reference and cartilage tissue. 

#165454 - $15.00 USD Received 27 Mar 2012; revised 23 Apr 2012; accepted 25 Apr 2012; published 25 Apr 2012
(C) 2012 OSA 1 May 2012 / Vol. 3,  No. 5 / BIOMEDICAL OPTICS EXPRESS  1112



  

0.4 0.6 0.8 1.0
0

50

100

150

200

250

A
b
s
o
rp

ti
o
n
 c

o
e
ff
ic

ie
n
t 
(c

m
-1
)

Frequency (THz)

0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

3.5

R
e
fr

a
c
ti
v
e
 i
n
d
e

x

Frequency (THz)

(a) (b)

 

 

 

 

 

 

 

x (mm) 

water

0.4

0.7

1.0

1.3

1.6

1.9

2.2

 

Fig. 3. Frequency dependence of (a) the refractive index and (b) the power absorption 
coefficient along the depth of the cartilage tissue. Each dotted line indicates the values for 
liquid water as reported in a previous literature [18]. 

absorption coefficients of the cartilage tissue gradually decreased and increased, respectively. 
Each absorption coefficient along the depth was lower than that of liquid water. In addition, 
no significant change in the refractive indices along the depth of the cartilage was observed. 
However, we found that the absorption coefficients decreased from the articular surface to the 
subchondral bone. For the extraction of the complex refractive index, we used an iteration 
method based on the transfer matrix theory where the effects of multiple reflections at the 
interfaces between the slide, cartilage, and LDPE film are taken into account [19]. 

Figure 4 shows the refractive index images and absorption coefficient images of cartilage 
tissue at 0.4 and 0.8 THz. The refractive index was relatively constant along the depth of 
cartilage at both 0.4 and 0.8 THz with the exception of the surface of the cartilage because of 
the diffraction. In the absorption coefficient image of the cartilage, the absorption was high at  
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Fig. 4. Refractive index images and absorption coefficient images of articular cartilage at 0.4 
and 0.8 THz. The dashed lines indicate the cartilage surface. 
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Fig. 5. (a) Refractive index profile and (b) absorption coefficient profile along the depth of 
cartilage tissue at 0.4 and 0.8 THz. 

the articular surface and gradually decreased along the depth of the cartilage. The refractive 
indices and absorption coefficients along the depth of cartilage at specific frequencies are 
shown in Fig. 5. At each frequency, the difference between the maximum and minimum 
values of the refractive index was less than 5% along the depth. In contrast, the absorption 
coefficient at each frequency significantly decreased from the articular surface to the 
subchondral bone. It has been known that the cartilage tissue is spatially heterogeneous and 
molecular composition of cartilage varies significantly in going from the articular surface to 
subchondral bone [1–6]. Therefore we speculate that the alteration of absorption coefficient 
along the depth of the cartilage matrix may result primarily from changes in water content 
because water has a strong absorption in the THz frequency range. 

The effective absorption coefficient of cartilage tissue is related to the absorption 
coefficients of the components in the cartilage, including water, proteoglycans, and collagen. 
To characterize the water distribution in cartilage tissue from the absorption coefficient, we 
should in principle take into account all the effects of the biochemical components in 
cartilage. However, we assumed that the absorption coefficient was determined predominantly 
by the water content, and did not account for other components, since water has a much 
higher THz absorption than the other biochemical components in cartilage. Consequently, we 
also assumed that the absorption coefficient was almost proportional to the volume fraction of  
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Fig. 6. Weight-fractional distribution of water in cartilage. The red and black curves represent 
the measurements by THz TDS and destructive biochemical method [20], respectively. The 
first points in the two curves correspond to the cartilage surfaces. 
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the water. Since the articular cartilage sample was diagnosed as osteoarthritic tissue but still 
had a visually intact surface, we compared our measurements with the water content of 
cartilage with an intact surface reported in a previous study [20] that used a destructive 
biochemical method to measure the water content. The calculated volume fraction of water 
was converted to a weight fraction using the conversion relation described in Ref. [21]. As 
seen in Fig. 6, the water content in our measurement decreased along the depth and shows a 
reasonably good agreement with the values from this previous study [20]. Further, the 
estimation of the water distribution in bovine cartilage using MRI demonstrated that water 
content varies from ~86% on the articular surface to ~63% on the subchondral bone [21], 
showing reasonably good agreement with our measurements. 

4. Conclusion 

We measured the refractive index and absorption coefficient of human articular cartilage, and 
quantitatively characterized the water distribution in cartilage matrix using THz TDS. The 
absorption coefficient of the cartilage tissue gradually decreased along the depth in the THz 
frequency range. The water content in our measurement shows reasonably good agreement 
with that of a previous report based on a destructive biochemical method. This suggests that 
the molecular composition, or more specifically, the water content, in cartilage matrix might 
have a specific depth profile that is correlated with the degree of degeneration in cartilage, 
which can possibly be measured by THz TDS. 
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