Cited 0 times in Scipus Cited Count

Bile acid signal-induced phosphorylation of small heterodimer partner by protein kinase Cζ is critical for epigenomic regulation of liver metabolic genes.

DC Field Value Language
dc.contributor.authorSeok, S-
dc.contributor.authorKanamaluru, D-
dc.contributor.authorXiao, Z-
dc.contributor.authorRyerson, D-
dc.contributor.authorChoi, SE-
dc.contributor.authorSuino-Powell, K-
dc.contributor.authorXu, HE-
dc.contributor.authorVeenstra, TD-
dc.contributor.authorKemper, JK-
dc.date.accessioned2014-05-20T06:20:00Z-
dc.date.available2014-05-20T06:20:00Z-
dc.date.issued2013-
dc.identifier.issn0021-9258-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/10019-
dc.description.abstractBile acids (BAs) are recently recognized key signaling molecules that control integrative metabolism and energy expenditure. BAs activate multiple signaling pathways, including those of nuclear receptors, primarily farnesoid X receptor (FXR), membrane BA receptors, and FXR-induced FGF19 to regulate the fed-state metabolism. Small heterodimer partner (SHP) has been implicated as a key mediator of these BA signaling pathways by recruitment of chromatin modifying proteins, but the key question of how SHP transduces BA signaling into repressive histone modifications at liver metabolic genes remains unknown. Here we show that protein kinase Cζ (PKCζ) is activated by BA or FGF19 and phosphorylates SHP at Thr-55 and that Thr-55 phosphorylation is critical for the epigenomic coordinator functions of SHP. PKCζ is coimmunopreciptitated with SHP and both are recruited to SHP target genes after bile acid or FGF19 treatment. Activated phosphorylated PKCζ and phosphorylated SHP are predominantly located in the nucleus after FGF19 treatment. Phosphorylation at Thr-55 is required for subsequent methylation at Arg-57, a naturally occurring mutation site in metabolic syndrome patients. Thr-55 phosphorylation increases interaction of SHP with chromatin modifiers and their occupancy at selective BA-responsive genes. This molecular cascade leads to repressive modifications of histones at metabolic target genes, and consequently, decreased BA pools and hepatic triglyceride levels. Remarkably, mutation of Thr-55 attenuates these SHP-mediated epigenomic and metabolic effects. This study identifies PKCζ as a novel key upstream regulator of BA-regulated SHP function, revealing the role of Thr-55 phosphorylation in epigenomic regulation of liver metabolism.-
dc.language.isoen-
dc.subject.MESHAnimals-
dc.subject.MESHBile Acids and Salts-
dc.subject.MESHEpigenesis, Genetic-
dc.subject.MESHFibroblast Growth Factors-
dc.subject.MESHHep G2 Cells-
dc.subject.MESHHumans-
dc.subject.MESHLiver-
dc.subject.MESHMale-
dc.subject.MESHMethylation-
dc.subject.MESHMice-
dc.subject.MESHMice, Inbred BALB C-
dc.subject.MESHMutation-
dc.subject.MESHPhosphorylation-
dc.subject.MESHProtein Kinase C-epsilon-
dc.subject.MESHReceptors, Cytoplasmic and Nuclear-
dc.subject.MESHSignal Transduction-
dc.titleBile acid signal-induced phosphorylation of small heterodimer partner by protein kinase Cζ is critical for epigenomic regulation of liver metabolic genes.-
dc.typeArticle-
dc.identifier.pmid23824184-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743497/-
dc.contributor.affiliatedAuthor최, 성이-
dc.type.localJournal Papers-
dc.identifier.doi10.1074/jbc.M113.452037-
dc.citation.titleThe Journal of biological chemistry-
dc.citation.volume288-
dc.citation.number32-
dc.citation.date2013-
dc.citation.startPage23252-
dc.citation.endPage23263-
dc.identifier.bibliographicCitationThe Journal of biological chemistry, 288(32). : 23252-23263, 2013-
dc.identifier.eissn1083-351X-
dc.relation.journalidJ000219258-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Physiology
Files in This Item:
There are no files associated with this item.

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse