PURPOSE: The prevalence of pollinosis is increasing, and it is expected to increase further with climate change. Mugwort and ragweed pollens are well known as prevalent allergenic weed pollens in Korea. However, the clinical significance of dandelion pollen as an inhalant allergen has not yet been studied. The purpose of this study was to evaluate the clinical significance and cross-allergenicity between dandelion and major weed pollens.
METHODS: Ninety-seven patients with allergic rhinitis and asthma or with allergic rhinitis alone who were sensitized to dandelion pollens on skin prick tests (allergen/histamine ratio>3) were enrolled between December, 2012 and November, 2013. Serum specific IgE levels to dandelion pollen extracts were measured by using enzyme-linked immunosorbent assay (ELISA). ELISA inhibition tests were performed to evaluate cross allergenecity with other weed pollens.
RESULTS: When the positive cutoff value for serum specific IgE was set at the mean+/-3 standard deviation of absorbance values, 52 patients (53.6%) had a high serum specific IgE antibody level. ELISA inhibition tests showed significant inhibitions with serial addition of dandelion pollen extracts, and 5 different inhibition patterns were noted with addition of 4 weed pollen extracts: significant inhibitions with pollens of mugwort, ragweed, chenopodium and Hop J (25%, 13 of 52), inhibitions with pollens of mugwort, ragweed and chenopodium (17.3%, 9 of 52), inhibitions with 2 pollens of mugwort and ragweed (32.6%, 17 of 52), inhibitions with mugwort pollen (21.1%, 11 of 52), and inhibitions with dandelion pollen alone (4%, 2 of 52).
CONCLUSION: These findings suggest that dandelion pollen may be a causative inhalant allergen to induce pollinosis in the autumn season. Cross-allergenicity with other weed pollens showed individual differences; most patients had cross-reactivity with mugwort, ragweed, and chenopodium pollens, while some with Hop J pollen. Few patients were sensitized to dandelion pollen alone.