An in situ-forming gel system comprised of diblock copolymer formed from polyethylene glycol (PEG) and polycaprolactone (PCL) {MPEG-b-(PCL-ran-PLLA)} could be used in controlled drug delivery for tissue remodeling. The purpose of this study is to demonstrate favorable vocal folds (VF) regeneration by using MPEG-b-(PCL-ran-PLLA) diblock copolymers (C97L3: CL/LA ratio 97:3) incorporating hepatocyte growth factor (HGF). Gradual release of HGF from C97L3 is detected and biochemical properties of released HGF are maintained. A scar is made with microscissors on both VFs in 32 rabbits, followed by injection of HGF-only, C97L3-only, or HGF-C97L3 composite gel in the left side VF, while the right side VF is left untreated. In vivo fluorescence live imaging system demonstrates that C97L3 enables the sustained release of injected HGF in the scarred VF for 12 weeks. The histological analysis shows increased glycosaminoglycan including hyaluronic acid accumulation and decreased collagen deposition. Videokymographic analysis shows more favorable vibrations of HGF-C97L3 treated VF mucosa, compared to other treatment groups. In conclusion, the controlled HGF release helps to regulate extracellular matrix synthesis, and leads to the eventual functional improvement of the scarred VF.