Chromatin remodeling factors are known as a key determinant of chromatin modification in DNA replication, transcription, and double strand break (DSB) repair. As a member of imitation switch (ISWI) family in ATP-dependent chromatin remodeling factors, the remodeling and spacing factor (RSF) complex consists of two subunits, SNF2h ATPase and RSF1. Recent studies suggest that the function of chromatin remodeling factor is to temporally regulate the chromatin modification in the crosstalk between DSB signaling pathway and transcriptional regulation for the efficient DSB repair. Although it has been reported that SNF2h ATPase is recruited to DSB sites in poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent manner, the function of RSF1 is still elusive. Here various cellular analyses confirmed that RSF1 is recruited and accumulated at DSBs in ATM-dependent manner, and the putative pSQ motifs of RSF1 by ATM are required for its accumulation at DSBs. In addition, depletion of RSF1 attenuates the activation of DNA damage checkpoint signals upon DNA damage. This defect is rescued by Trichostatin (TSA) treatment via chromatin relaxation. Thus, chromatin relaxation by RSF1 as chromatin remodeling factor is required for the propagation of ɣH2AX signaling pathway. As a result, RSF1 promotes homologous recombination repair (HRR) by recruiting HR factors. Although RSF1 propagates ɣH2AX signal pathway for the efficient repair as one of chromatin remodeling factors, the function of RSF1 in crosstalk between transcription and DDR is still elusive. Here inducible transcription system at DSB sites showed that RSF1 promotes DSB-induced transcriptional silencing, while SNF2h is dispensable for transcriptional silencing at DSB sites. The major determinant of DSB-induced transcriptional silencing, ATM signaling, is also impaired in RSF1 depleted cells. To determine the molecular mechanism of DSB-induced transcriptional silencing regulated by RSF1, the proteins in RSF1 mass spectrometry were screened by microirradiation. On the basis of the screening results from mass spectrometry analysis, the recruitment of transcriptional repressors at DSB sites in RSF1-dependent manner promotes DSB-induced transcriptional silencing. In addition, RSF1 interacts with polycomb repressive complex (PRC) at transcriptionally active site, and Swi3, Ada2, N-Cor, and TFIIIB (SANT) domain of enhancer of zeste homolog 2 (EZH2) is required for its recruitment and its interaction with RSF1. The impaired recruitment of EZH2 at DSB sites also leads to the defects in recruitment of RING1B and its substrate, H2AK119 ubiquitination at DSB sites. In addition, the defect in deacetylation of H2AK118 at DSB sites by HDAC1 in RSF1 depleted cells reduces the level of H2AK119 ubiquitination at DSB sites and eventually leads to the failure in DSB-induced transcriptional silencing. Finally, transcriptome analysis by RNA-sequencing reveals that transcriptome in cells upon DNA damage is changed in RSF1 depleted cells, and as a result, in RSF1 depleted cells, cell death is remarkably reduced upon the continuous DNA damage. Altogether, these data reveal that RSF1 is recruited at DSB sites and regulates ATM-dependent checkpoint signaling pathway by chromatin relaxation. In parallel, RSF1 also regulates DSB-induced transcription silencing through PRC complex and HDAC1 and the crosstalk between the histone modifications by these histone modifiers.
RSF1은 RSF복합체의 하나의 구성요소로서 크로마틴 리모델링을 할 수 있는 단백질로 알려져 있다. 크로마틴 리모델링 인자는 DNA 복제과정과 전사과정에 중요한 역할을 한다고 알려져 있지만 최근에 많은 연구들이 DNA 손상 복구 기전에도 관여한다고 보고되고 있다. RSF 복합체 중 SNF2h ATPase 효소는 DNA 손상기전에서 크로마틴의 구조 변화를 시킬 것이라는 보고가 많이 되어있는 편이지만, 그의 결합단백질인 RSF1에 의한 DNA 손상 복구 기전은 명확히 밝혀진 바가 없다. 따라서 본 연구에서는 RSF1의 DNA 손상 신호 체계에서의 역할과 그로 인한 손상 복구 기전에 대해 연구를 진행하였다. 먼저 RSF1이 DNA 손상된 자리에 축적되는 것을 확인하였고 RSF1이 없을 경우 DNA 손상 신호 체계가 약화되는 것을 확인하였다. 그 결과 복구 기전 또한 조절되지 못하는 것을 확인하였다. RSF1은 크로마틴을 리모델링 할 수 있는 기능을 가지고 있기 때문에 RSF1이 없을 경우 크로마틴의 변화를 관찰하였고 그 결과 RSF1이 없을 경우 DNA 손상을 복구하기 위해 크로마틴이 열려야 하는 조절과정이 약화되어 닫힌 구조로 계속 남아있어 DNA 손상 신호가 확산되지 못하는 것을 규명하였다. DNA 손상복구 과정은 DNA 손상신호가 잘 진행이 되어야 효율적으로 일어날 수 있지만 근처에서 진행되는 DNA 전사 억제과정도 필요하다. RSF1은 또한 크로마틴 리모델링 인자로서 DNA 전사과정에 매우 중요한 역할을 하는 것으로 알려져 있다. 따라서 본 연구에서는 RSF1이 크로마틴 리모델링 인자로서 DNA 전사 억제 과정 또한 조절하는지 연구를 진행하였다. 먼저 RSF1의 결합 단백질의 스크리닝을 통해 RSF1에 의해 DNA 손상된 자리에 오는 단백질들을 선택하였고 그 단백질 중 히스톤 단백질 번역 후 변형을 시킬 수 있는 효소인 EZH2와 HDAC1을 선택하여 연구를 진행하였다. 두 단백질은 모두 RSF1이 없을 경우 DNA 손상 자리에 이동하지 못하였고 두 단백질 모두 DNA 손상으로 유도되는 DNA 전사 억제 과정에도 작용한다는 것을 알 수 있었다. 그 기전으로는 EZH2가 RSF1과 결합하여 DNA 손상자리에 오고 RING1B라는 유비퀴틴 접합효소를 같이 이동시켜 H2A 히스톤의 K119자리에 유비퀴틴을 접합시켜 DNA 전사 억제 과정을 촉진하는 것을 알 수 있었다. 이 과정에서 H2A 히스톤의 K119자리에 유비퀴틴을 접합시키기 위해서는 HDAC1에 의한 K118의 탈 아세틸화가 선행되야 K119의 유비퀴틴화가 효율적으로 일어난다는 것 또한 알 수 있었다. 또한 RSF1이 없을 경우 세포 안에서 전반적인 전사과정은 어떻게 변하는지를 관찰하였고 그 결과 p53에 의한 전사 기전을 통한 세포 사멸 현상도 조절 한다는 것을 규명하였다. 따라서 본 연구는 RSF1의 DNA 손상 복구를 조절하는 기전으로 크로마틴의 구조변화에 의한 DNA 손상 신호 체계에서의 역할과 DNA 손상으로 인한 DNA 전사 조절 역할을 규명하였다.