Cited 0 times in Scipus Cited Count

PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine

Authors
Manavalan, B  | Shin, TH | Lee, G
Citation
Frontiers in microbiology, 9. : 476-476, 2018
Journal Title
Frontiers in microbiology
ISSN
1664-302X
Abstract
Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming: hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html.
Keywords

DOI
10.3389/fmicb.2018.00476
PMID
29616000
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Physiology
Ajou Authors
Balachandran, Manavalan  |  이, 광
Full Text Link
Files in This Item:
29616000.pdfDownload
Export

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse