Although many graft materials have been used for augmentation rhinoplasty, an ideal graft has not yet been developed. As the field of tissue engineering has been developing, it has been applied to the reconstruction of many organs, but its application in the rhinoplasty field is still limited. This study evaluated the utility of allogenic chondrocytes with fibrin/hyaluronic acid (HA)-poly(l-lactic-co-glycolic acid) (PLGA) constructs in augmentation rhinoplasty. Chondrocytes from rabbit auricular cartilage were isolated and cultured with fibrin/HA hydrogels and implanted into PLGA scaffolds. After 8 weeks of in vitro culture, the scaffolds were implanted in the nasal dorsum of six rabbits. Eight weeks postoperatively, the implanted sites were evaluated with gross, radiologic, and histologic analysis. In vitro, more than 90% of the seeded chondrocytes in the PLGA scaffolds survived for 2 weeks, and they produced a large amount of extracellular matrix and were well differentiated. The grafts maintained their initial shape for 8 weeks after implantation. Radiological and histological evaluations showed that the structure was well maintained with minimal inflammatory response and appropriate elevation levels. However, the formation of neo-chondrocytes was not observed. PLGA scaffolds seeded with fibrin/HA and allogenic chondrocytes can be a biocompatible augmentation material in rhinoplasty in the future.