Cited 0 times in Scipus Cited Count

Can we predict when to start renal replacement therapy in patients with chronic kidney disease using 6 months of clinical data?

DC Field Value Language
dc.contributor.authorLee, MJ-
dc.contributor.authorPark, JH-
dc.contributor.authorMoon, YR-
dc.contributor.authorJo, SY-
dc.contributor.authorYoon, D-
dc.contributor.authorPark, RW-
dc.contributor.authorJeong, JC-
dc.contributor.authorPark, I-
dc.contributor.authorShin, GT-
dc.contributor.authorKim, H-
dc.date.accessioned2019-11-13T00:20:12Z-
dc.date.available2019-11-13T00:20:12Z-
dc.date.issued2018-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/17218-
dc.description.abstractPURPOSE: We aimed to develop a model of chronic kidney disease (CKD) progression for predicting the probability and time to progression from various CKD stages to renal replacement therapy (RRT), using 6 months of clinical data variables routinely measured at healthcare centers.
METHODS: Data were derived from the electronic medical records of Ajou University Hospital, Suwon, South Korea from October 1997 to September 2012. We included patients who were diagnosed with CKD (estimated glomerular filtration rate [eGFR] < 60 mL.min-1.1.73 m-2 for >/= 3 months) and followed up for at least 6 months. The study population was randomly divided into training and test sets.
RESULTS: We identified 4,509 patients who met reasonable diagnostic criteria. Patients were randomly divided into 2 groups, and after excluding patients with missing data, the training and test sets included 1,625 and 1,618 patients, respectively. The integral mean was the most powerful explanatory (R2 = 0.404) variable among the 8 modified values. Ten variables (age, sex, diabetes mellitus[DM], polycystic kidney disease[PKD], serum albumin, serum hemoglobin, serum phosphorus, serum potassium, eGFR (calculated by Chronic Kidney Disease Epidemiology Collaboration [CKD-EPI]), and urinary protein) were included in the final risk prediction model for CKD stage 3 (R2 = 0.330). Ten variables (age, sex, DM, GN, PKD, serum hemoglobin, serum blood urea nitrogen[BUN], serum calcium, eGFR(calculated by Modification of Diet in Renal Disease[MDRD]), and urinary protein) were included in the final risk prediction model for CKD stage 4 (R2 = 0.386). Four variables (serum hemoglobin, serum BUN, eGFR(calculated by MDRD) and urinary protein) were included in the final risk prediction model for CKD stage 5 (R2 = 0.321).
CONCLUSION: We created a prediction model according to CKD stages by using integral means. Based on the results of the Brier score (BS) and Harrel's C statistics, we consider that our model has significant explanatory power to predict the probability and interval time to the initiation of RRT.
-
dc.language.isoen-
dc.subject.MESHAdult-
dc.subject.MESHAged-
dc.subject.MESHAged, 80 and over-
dc.subject.MESHDisease Progression-
dc.subject.MESHElectronic Health Records-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHModels, Biological-
dc.subject.MESHPrognosis-
dc.subject.MESHRandom Allocation-
dc.subject.MESHRenal Insufficiency, Chronic-
dc.subject.MESHRenal Replacement Therapy-
dc.subject.MESHRetrospective Studies-
dc.subject.MESHRisk Assessment-
dc.subject.MESHTime Factors-
dc.subject.MESHYoung Adult-
dc.titleCan we predict when to start renal replacement therapy in patients with chronic kidney disease using 6 months of clinical data?-
dc.typeArticle-
dc.identifier.pmid30286208-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171856/-
dc.contributor.affiliatedAuthor이, 민정-
dc.contributor.affiliatedAuthor조, 수연-
dc.contributor.affiliatedAuthor윤, 덕용-
dc.contributor.affiliatedAuthor박, 래웅-
dc.contributor.affiliatedAuthor정, 종철-
dc.contributor.affiliatedAuthor박, 인휘-
dc.contributor.affiliatedAuthor신, 규태-
dc.contributor.affiliatedAuthor김, 흥수-
dc.type.localJournal Papers-
dc.identifier.doi10.1371/journal.pone.0204586-
dc.citation.titlePloS one-
dc.citation.volume13-
dc.citation.number10-
dc.citation.date2018-
dc.citation.startPagee0204586-
dc.citation.endPagee0204586-
dc.identifier.bibliographicCitationPloS one, 13(10). : e0204586-e0204586, 2018-
dc.identifier.eissn1932-6203-
dc.relation.journalidJ019326203-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Nephrology
Journal Papers > School of Medicine / Graduate School of Medicine > Dermatology
Journal Papers > School of Medicine / Graduate School of Medicine > Biomedical Informatics
Files in This Item:
30286208.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse