Cited 0 times in
Silica-coated magnetic nanoparticles induce glucose metabolic dysfunction in vitro via the generation of reactive oxygen species
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shin, TH | - |
dc.contributor.author | Seo, C | - |
dc.contributor.author | Lee, DY | - |
dc.contributor.author | Ji, M | - |
dc.contributor.author | Manavalan, B | - |
dc.contributor.author | Basith, S | - |
dc.contributor.author | Chakkarapani, SK | - |
dc.contributor.author | Kang, SH | - |
dc.contributor.author | Lee, G | - |
dc.contributor.author | Paik, MJ | - |
dc.contributor.author | Park, CB | - |
dc.date.accessioned | 2020-10-21T07:21:04Z | - |
dc.date.available | 2020-10-21T07:21:04Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 0340-5761 | - |
dc.identifier.uri | http://repository.ajou.ac.kr/handle/201003/18853 | - |
dc.description.abstract | Nanoparticles are a useful material in biomedicine given their unique properties and biocompatibility: however, there is increasing concern regarding the potential toxicity of nanoparticles with respect to cell metabolism. Some evidence suggests that nanoparticles can disrupt glucose and energy homeostasis. In this study, we investigated the metabolomic, transcriptomic, and integrated effects of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] on glucose metabolism in human embryonic kidney 293 (HEK293) cells. Using gas chromatography-tandem mass spectrometry, we analysed the metabolite profiles of 14 organic acids (OAs), 20 amino acids (AAs), and 13 fatty acids (FAs) after treatment with 0.1 or 1.0 microg/microl MNPs@SiO2(RITC) for 12 h. The metabolic changes were highly related to reactive oxygen species (ROS) generation and glucose metabolism. Additionally, effects on the combined metabolome and transcriptome or "metabotranscriptomic network" indicated a relationship between ROS generation and glucose metabolic dysfunction. In the experimental validation, MNPs@SiO2(RITC) treatment significantly decreased the amount of glucose in cells and was associated with a reduction in glucose uptake efficiency. Decreased glucose uptake efficiency was also related to ROS generation and impaired glucose metabolism in the metabotranscriptomic network. Our results suggest that exposure to high concentrations of MNPs@SiO2(RITC) produces maladaptive alterations in glucose metabolism and specifically glucose uptake as well as related metabolomic and transcriptomic disturbances via increased ROS generation. These findings further indicate that an integrated metabotranscriptomics approach provides useful and sensitive toxicological assessment for nanoparticles. | - |
dc.language.iso | en | - |
dc.subject.MESH | Glucose | - |
dc.subject.MESH | HEK293 Cells | - |
dc.subject.MESH | Humans | - |
dc.subject.MESH | Magnetite Nanoparticles | - |
dc.subject.MESH | Metabolomics | - |
dc.subject.MESH | Reactive Oxygen Species | - |
dc.subject.MESH | Rhodamines | - |
dc.subject.MESH | Silicon Dioxide | - |
dc.subject.MESH | Transcriptome | - |
dc.title | Silica-coated magnetic nanoparticles induce glucose metabolic dysfunction in vitro via the generation of reactive oxygen species | - |
dc.type | Article | - |
dc.identifier.pmid | 30737549 | - |
dc.subject.keyword | Gas chromatography–tandem mass spectrometry | - |
dc.subject.keyword | Glucose uptake | - |
dc.subject.keyword | Magnetic nanoparticles | - |
dc.subject.keyword | Nanotoxicity | - |
dc.subject.keyword | Reactive oxygen species | - |
dc.contributor.affiliatedAuthor | 신, 태환 | - |
dc.contributor.affiliatedAuthor | Balachandran, Manavalan | - |
dc.contributor.affiliatedAuthor | Basith, Shaherin | - |
dc.contributor.affiliatedAuthor | 이, 광 | - |
dc.contributor.affiliatedAuthor | 박, 찬배 | - |
dc.type.local | Journal Papers | - |
dc.identifier.doi | 10.1007/s00204-019-02402-z | - |
dc.citation.title | Archives of toxicology | - |
dc.citation.volume | 93 | - |
dc.citation.number | 5 | - |
dc.citation.date | 2019 | - |
dc.citation.startPage | 1201 | - |
dc.citation.endPage | 1212 | - |
dc.identifier.bibliographicCitation | Archives of toxicology, 93(5). : 1201-1212, 2019 | - |
dc.embargo.liftdate | 9999-12-31 | - |
dc.embargo.terms | 9999-12-31 | - |
dc.identifier.eissn | 1432-0738 | - |
dc.relation.journalid | J003405761 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.