Cited 0 times in Scipus Cited Count

Makorin 1 is required for Drosophila oogenesis by regulating insulin/Tor signaling

DC Field Value Language
dc.contributor.authorJeong, EB-
dc.contributor.authorJeong, SS-
dc.contributor.authorCho, E-
dc.contributor.authorKim, EY-
dc.date.accessioned2020-10-21T07:21:30Z-
dc.date.available2020-10-21T07:21:30Z-
dc.date.issued2019-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/18933-
dc.description.abstractReproduction is a process that is extremely sensitive to changes in nutritional status. The nutritional control of oogenesis via insulin signaling has been reported: however, the mechanism underlying its sensitivity and tissue specificity has not been elucidated. Here, we determined that Drosophila Makorin RING finger protein 1 gene (Mkrn1) functions in the metabolic regulation of oogenesis. Mkrn1 was endogenously expressed at high levels in ovaries and Mkrn1 knockout resulted in female sterility. Mkrn1-null egg chambers were previtellogenic without egg production. FLP-FRT mosaic analysis revealed that Mkrn1 is essential in germline cells, but not follicle cells, for ovarian function. As well, AKT phosphorylation via insulin signaling was greatly reduced in the germline cells, but not the follicle cells, of the mutant clones in the ovaries. Furthermore, protein-rich diet elevated Mkrn1 protein levels, without increased mRNA levels. The p-AKT and p-S6K levels, downstream targets of insulin/Tor signaling, were significantly increased by a nutrient-rich diet in wild-type ovaries whereas those were low in Mkrn1exS compared to wild-type ovaries. Taken together, our results suggest that nutrient availability upregulates the Mkrn1 protein, which acts as a positive regulator of insulin signaling to confer sensitivity and tissue specificity in the ovaries for proper oogenesis based on nutritional status.-
dc.language.isoen-
dc.subject.MESHAnimals-
dc.subject.MESHAnimals, Genetically Modified-
dc.subject.MESHDietary Proteins-
dc.subject.MESHDrosophila Proteins-
dc.subject.MESHDrosophila melanogaster-
dc.subject.MESHFemale-
dc.subject.MESHInsulin-
dc.subject.MESHInsulin, Regular, Human-
dc.subject.MESHMutation-
dc.subject.MESHNerve Tissue Proteins-
dc.subject.MESHOocytes-
dc.subject.MESHOogenesis-
dc.subject.MESHOvary-
dc.subject.MESHRibonucleoproteins-
dc.subject.MESHSignal Transduction-
dc.subject.MESHTOR Serine-Threonine Kinases-
dc.titleMakorin 1 is required for Drosophila oogenesis by regulating insulin/Tor signaling-
dc.typeArticle-
dc.identifier.pmid31009498-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476528/-
dc.contributor.affiliatedAuthor김, 은영-
dc.type.localJournal Papers-
dc.identifier.doi10.1371/journal.pone.0215688-
dc.citation.titlePloS one-
dc.citation.volume14-
dc.citation.number4-
dc.citation.date2019-
dc.citation.startPagee0215688-
dc.citation.endPagee0215688-
dc.identifier.bibliographicCitationPloS one, 14(4). : e0215688-e0215688, 2019-
dc.identifier.eissn1932-6203-
dc.relation.journalidJ019326203-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Brain Science
Files in This Item:
31009498.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse