Cited 0 times in Scipus Cited Count

Accumulation of labile zinc in neurons and astrocytes in the spinal cords of G93A SOD-1 transgenic mice.

DC Field Value Language
dc.contributor.authorKim, TY-
dc.contributor.authorHwang, JJ-
dc.contributor.authorLee, JY-
dc.contributor.authorShin, JH-
dc.contributor.authorGwag, BJ-
dc.contributor.authorKoh, JY-
dc.date.accessioned2010-11-12T05:11:34Z-
dc.date.available2010-11-12T05:11:34Z-
dc.date.issued2009-
dc.identifier.issn0969-9961-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/193-
dc.description.abstractZinc dyshomeostasis may trigger oxidative stress, which is likely the key mechanism of neuronal death in amyotrophic lateral sclerosis (ALS), including familial forms such as G93A SOD-1 ALS. Since zinc binding by G93A SOD-1 is weaker than by normal SOD-1, we assessed whether labile zinc levels are altered in the spinal cords of G93A SOD-1 transgenic (Tg) mice. Whereas no zinc-containing cells were found in wild-type (WT) mice, neurons and astrocytes with high levels of labile zinc appeared in G93A SOD-1 Tg mice, in correlation with motoneuron degeneration. The level of HNE, an endogenous neurotoxic molecule, was increased around zinc-accumulating cells and mSOD-1 positive cells, suggesting a link between HNE, SOD-1 mutation and zinc accumulation. Moreover, exposure of cultured spinal neurons and astrocytes from G93A SOD-1 Tg mice to HNE increased labile zinc levels, and exposure to zinc increased 4-hydroxynonenal (HNE) levels, to a greater degree than in WT neurons and astrocytes. Administration of the zinc chelator TPEN extended survival in G93A SOD-1 Tg mice. These results indicate that zinc dyshomeostasis occurs in the spinal cords of Tg mice, and that this dyshomeostasis may contribute to motoneuron degeneration.-
dc.formatapplication/pdf-
dc.language.isoen-
dc.subject.MESHAldehydes-
dc.subject.MESHAmyotrophic Lateral Sclerosis-
dc.subject.MESHAnimals-
dc.subject.MESHAstrocytes-
dc.subject.MESHChelating Agents-
dc.subject.MESHDisease Models, Animal-
dc.subject.MESHHomeostasis-
dc.subject.MESHMice-
dc.subject.MESHMice, Transgenic-
dc.subject.MESHMotor Neurons-
dc.subject.MESHMutation-
dc.subject.MESHNerve Degeneration-
dc.subject.MESHOxidative Stress-
dc.subject.MESHSpinal Cord-
dc.subject.MESHSuperoxide Dismutase-
dc.subject.MESHSurvival Rate-
dc.subject.MESHUp-Regulation-
dc.subject.MESHZinc-
dc.titleAccumulation of labile zinc in neurons and astrocytes in the spinal cords of G93A SOD-1 transgenic mice.-
dc.typeArticle-
dc.identifier.pmid19344646-
dc.identifier.urlhttp://linkinghub.elsevier.com/retrieve/pii/S0969-9961(09)00006-0-
dc.contributor.affiliatedAuthor곽, 병주-
dc.type.localJournal Papers-
dc.identifier.doi10.1016/j.nbd.2009.01.004-
dc.citation.titleNeurobiology of disease-
dc.citation.volume34-
dc.citation.number2-
dc.citation.date2009-
dc.citation.startPage221-
dc.citation.endPage229-
dc.identifier.bibliographicCitationNeurobiology of disease, 34(2). : 221-229, 2009-
dc.identifier.eissn1095-953X-
dc.relation.journalidJ009699961-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Pharmacology
Files in This Item:
There are no files associated with this item.

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse