Cited 0 times in
Benefits of VISION Max automated cross-matching in comparison with manual cross-matching: A multidimensional analysis
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chung, HJ | - |
dc.contributor.author | Hur, M | - |
dc.contributor.author | Choi, SG | - |
dc.contributor.author | Lee, HK | - |
dc.contributor.author | Lee, S | - |
dc.contributor.author | Kim, H | - |
dc.contributor.author | Moon, HW | - |
dc.contributor.author | Yun, YM | - |
dc.date.accessioned | 2022-01-14T05:18:45Z | - |
dc.date.available | 2022-01-14T05:18:45Z | - |
dc.date.issued | 2019 | - |
dc.identifier.uri | http://repository.ajou.ac.kr/handle/201003/20078 | - |
dc.description.abstract | BACKGROUND: VISION Max (Ortho-Clinical Diagnostics, Raritan, NJ, USA) is a newly introduced automated blood bank system. Cross-matching (XM) is an important test confirming safety by simulating reaction between packed Red Blood Cells (RBCs) and patient blood in vitro before transfusion. We assessed the benefits of VISION Max automated XM (A-XM) in comparison with those of manual XM (M-XM) by using multidimensional analysis (cost-effectiveness and quality improvement).
MATERIALS AND METHODS: In a total of 327 tests (130 patients), results from A-XM and M-XM were compared. We assessed the concordance rate, risk priority number (RPN), turnaround time, hands-on time, and the costs of both methods. We further simulated their annual effects based on 37,937 XM tests in 2018. RESULTS: The concordance rate between A-XM and M-XM was 97.9% (320/327, kappa = 0.83), and the seven discordant results were incompatible for transfusion in A-XM, while compatible for transfusion in M-XM. None of the results was incompatible for transfusion in A-XM, while compatible for transfusion in M-XM, meaning A-XM detect agglutination more sensitively and consequently provides a more safe result than M-XM. A-XM was estimated to have a 6.3-fold lower risk (229 vs. 1,435 RPN), shorter turnaround time (19.1 vs. 23.3 min, P < 0.0001), shorter hands-on time (1.1 vs. 5.3 min, P < 0.0001), and lower costs per single test than M-XM (1.44 vs. 2.70 USD). A-XM permitted annual savings of 46 million RPN, 15.1 months of daytime workers' labor, and 47,042 USD compared with M-XM. CONCLUSION: This is the first attempt to implement A-XM using VISION Max. VISION Max A-XM appears to be a safe, practical, and reliable alternative for pre-transfusion workflow with the potential to improve quality and cost-effectiveness in the blood bank. | - |
dc.subject.MESH | Automation, Laboratory | - |
dc.subject.MESH | Blood Banks | - |
dc.subject.MESH | Blood Grouping and Crossmatching | - |
dc.subject.MESH | Blood Safety | - |
dc.subject.MESH | Computer Simulation | - |
dc.subject.MESH | Cost-Benefit Analysis | - |
dc.subject.MESH | Humans | - |
dc.subject.MESH | Reproducibility of Results | - |
dc.subject.MESH | Risk Assessment | - |
dc.subject.MESH | Specimen Handling | - |
dc.subject.MESH | Workflow | - |
dc.title | Benefits of VISION Max automated cross-matching in comparison with manual cross-matching: A multidimensional analysis | - |
dc.type | Article | - |
dc.identifier.pmid | 31869405 | - |
dc.identifier.url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927601/ | - |
dc.contributor.affiliatedAuthor | Lee, S | - |
dc.type.local | Journal Papers | - |
dc.identifier.doi | 10.1371/journal.pone.0226477 | - |
dc.citation.title | PloS one | - |
dc.citation.volume | 14 | - |
dc.citation.number | 12 | - |
dc.citation.date | 2019 | - |
dc.citation.startPage | e0226477 | - |
dc.citation.endPage | e0226477 | - |
dc.identifier.bibliographicCitation | PloS one, 14(12). : e0226477-e0226477, 2019 | - |
dc.identifier.eissn | 1932-6203 | - |
dc.relation.journalid | J019326203 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.