Cited 0 times in Scipus Cited Count

Phase transformations and subsurface changes in three dental zirconia grades after sandblasting with various al2 o3 particle sizes

DC Field Value Language
dc.contributor.authorKim, HK-
dc.contributor.authorYoo, KW-
dc.contributor.authorKim, SJ-
dc.contributor.authorJung, CH-
dc.date.accessioned2022-12-26T00:39:13Z-
dc.date.available2022-12-26T00:39:13Z-
dc.date.issued2021-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/23506-
dc.description.abstractAlthough sandblasting is mainly used to improve bonding between dental zirconia and resin cement, the details on the in-depth damages are limited. The aim of this study was to evaluate phase transformations and subsurface changes after sandblasting in three different dental zirco-nia (3, 4, and 5 mol% yttria-stabilized zirconia; 3Y-TZP, 4Y-PSZ, and 5Y-PSZ). Zirconia specimens (14.0 × 14.0 × 1.0 mm3) were sandblasted using different alumina particle sizes (25, 50, 90, 110, and 125 µm) under 0.2 MPa for 10 s/cm2. Phase transformations and residual stresses were investigated using X-ray diffraction and the Williamson-Hall method. Subsurface damages were evaluated with cross-sections by a focused ion beam. Stress field during sandblasting was simulated by the finite element method. The subsurface changes after sandblasting were the emergence of a rhombohedral phase, micro/macro cracks, and compressive/tensile stresses depending on the interactions between blasting particles and zirconia substrates. 3Y-TZP blasted with 110-µm particles induced the deepest transformed layer with the largest compressive stress. The cracks propagated parallel to the surface with larger particles, being located up to 4.5 µm under the surface in 4Y-or 5Y-PSZ subgroups. The recommended sandblasting particles were 110 µm for 3Y-TZP and 50 µm for 4Y-PSZ or 5Y-PSZ for compressive stress-induced phase transformations without significant subsurface damages.-
dc.language.isoen-
dc.titlePhase transformations and subsurface changes in three dental zirconia grades after sandblasting with various al2 o3 particle sizes-
dc.typeArticle-
dc.identifier.pmid34576556-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470423/-
dc.subject.keywordAir abrasion-
dc.subject.keywordDental stress analysis-
dc.subject.keywordPhase transition-
dc.subject.keywordSurface tension-
dc.subject.keywordZirconium oxide-
dc.contributor.affiliatedAuthorKim, HK-
dc.type.localJournal Papers-
dc.identifier.doi10.3390/ma14185321-
dc.citation.titleMaterials (Basel, Switzerland)-
dc.citation.volume14-
dc.citation.number18-
dc.citation.date2021-
dc.citation.startPage5321-
dc.citation.endPage5321-
dc.identifier.bibliographicCitationMaterials (Basel, Switzerland), 14(18). : 5321-5321, 2021-
dc.identifier.eissn1996-1944-
dc.relation.journalidJ019961944-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Dentistry
Files in This Item:
34576556.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse