Cited 0 times in Scipus Cited Count

Brain MRI radiomics analysis may predict poor psychomotor outcome in preterm neonates

DC Field Value Language
dc.contributor.authorShin, Y-
dc.contributor.authorNam, Y-
dc.contributor.authorShin, T-
dc.contributor.authorChoi, JW-
dc.contributor.authorLee, JH-
dc.contributor.authorJung, DE-
dc.contributor.authorLim, J-
dc.contributor.authorKim, HG-
dc.date.accessioned2023-01-05T03:03:38Z-
dc.date.available2023-01-05T03:03:38Z-
dc.date.issued2021-
dc.identifier.issn0938-7994-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/23737-
dc.description.abstractObjectives: This study aimed to apply a radiomics approach to predict poor psychomotor development in preterm neonates using brain MRI. Methods: Prospectively enrolled preterm neonates underwent brain MRI near or at term-equivalent age and neurodevelopment was assessed at a corrected age of 12 months. Two radiologists visually assessed the degree of white matter injury. The radiomics analysis on white matter was performed using T1-weighted images (T1WI) and T2-weighted images (T2WI). A total of 1906 features were extracted from the images and the minimum redundancy maximum relevance algorithm was used to select features. A prediction model for the binary classification of the psychomotor developmental index was developed and eightfold cross-validation was performed. The diagnostic performance of the model was evaluated using the AUC with and without including significant clinical and DTI parameters. Results: A total of 46 preterm neonates (median gestational age, 29 weeks; 26 males) underwent brain MRI (median corrected gestational age, 37 weeks). Thirteen of 46 (28.3%) neonates showed poor psychomotor outcomes. There was one neonate among 46 with moderate to severe white matter injury on visual assessment. For the radiomics analysis, twenty features were selected for each analysis. The AUCs of prediction models based on T1WI, T2WI, and both T1WI and T2WI were 0.925, 0.834, and 0.902. Including gestational age or DTI parameters did not improve the prediction performance of T1WI. Conclusions: A radiomics analysis of white matter using early T1WI or T2WI could predict poor psychomotor outcomes in preterm neonates. Key Points: • Radiomics analysis on T1-weighted images of preterm neonates showed the highest diagnostic performance (AUC, 0.925) for predicting poor psychomotor outcomes. • In spite of 45 of 46 neonates having no significant white matter injury on visual assessment, the radiomics analysis of early brain MRI showed good diagnostic performance (sensitivity, 84.6%; specificity, 78.8%) for predicting poor psychomotor outcomes. • Radiomics analysis on early brain MRI can help to predict poor neurodevelopmental outcomes in preterm neonates.-
dc.language.isoen-
dc.subject.MESHGestational Age-
dc.subject.MESHHumans-
dc.subject.MESHInfant-
dc.subject.MESHInfant, Newborn-
dc.subject.MESHMagnetic Resonance Imaging-
dc.subject.MESHMale-
dc.subject.MESHNeuroimaging-
dc.subject.MESHRetrospective Studies-
dc.subject.MESHWhite Matter-
dc.titleBrain MRI radiomics analysis may predict poor psychomotor outcome in preterm neonates-
dc.typeArticle-
dc.identifier.pmid33758957-
dc.subject.keywordInfant-
dc.subject.keywordMagnetic resonance imaging-
dc.subject.keywordNeurodevelopmental disorder-
dc.subject.keywordPremature birth-
dc.subject.keywordRadiomics-
dc.contributor.affiliatedAuthorChoi, JW-
dc.contributor.affiliatedAuthorLee, JH-
dc.contributor.affiliatedAuthorJung, DE-
dc.type.localJournal Papers-
dc.identifier.doi10.1007/s00330-021-07836-7-
dc.citation.titleEuropean radiology-
dc.citation.volume31-
dc.citation.number8-
dc.citation.date2021-
dc.citation.startPage6147-
dc.citation.endPage6155-
dc.identifier.bibliographicCitationEuropean radiology, 31(8). : 6147-6155, 2021-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.identifier.eissn1432-1084-
dc.relation.journalidJ009387994-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Radiology
Journal Papers > School of Medicine / Graduate School of Medicine > Pediatrics & Adolescent Medicine
Files in This Item:
There are no files associated with this item.

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse