Cited 0 times in Scipus Cited Count

NAMPT mitigates colitis severity by supporting redox-sensitive activation of phagocytosis in inflammatory macrophages

Authors
Hong, SM  | Lee, AY | Hwang, SM | Ha, YJ | Kim, MJ | Min, S | Hwang, W | Yoon, G  | Kwon, SM | Woo, HG  | Kim, HH | Jeong, WI | Shen, HM | Im, SH | Lee, D  | Kim, YS
Citation
Redox biology, 50. : 102237-102237, 2022
Journal Title
Redox biology
ISSN
2213-2317
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD(+)) salvage pathway and plays a crucial role in the maintenance of the NAD(+) pool during inflammation. Considering that macrophages are essential for tissue homeostasis and inflammation, we sought to examine the functional impact of NAMPT in inflammatory macrophages, particularly in the context of inflammatory bowel disease (IBD). In this study, we show that mice with NAMPT deletion within the myeloid compartment (Nampt(f/f)LysMCre(+/-), Nampt mKO) have more pronounced colitis with lower survival rates, as well as numerous uncleared apoptotic corpses within the mucosal layer. Nampt-deficient macrophages exhibit reduced phagocytic activity due to insufficient NAD(+) abundance, which is required to produce NADPH for the oxidative burst. Nicotinamide mononucleotide (NMN) treatment rescues NADPH levels in Nampt mKO macrophages and sustains superoxide generation via NADPH oxidase. Consequently, Nampt mKO mice fail to clear dead cells during tissue repair, leading to substantially prolonged chronic colitis. Moreover, systemic administration of NMN, to supply NAD(+), effectively suppresses the disease severity of DSS-induced colitis. Collectively, our findings suggest that activation of the NAMPT-dependent NAD(+) biosynthetic pathway, via NMN administration, is a potential therapeutic strategy for managing inflammatory diseases.
Keywords

MeSH

DOI
10.1016/j.redox.2022.102237
PMID
35063804
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Biochemistry & Molecular Biology
Journal Papers > School of Medicine / Graduate School of Medicine > Physiology
Journal Papers > School of Medicine / Graduate School of Medicine > Pathology
Ajou Authors
김, 유선  |  우, 현구  |  윤, 계순  |  이, 다근  |  홍, 선미
Full Text Link
Files in This Item:
35063804.pdfDownload
Export

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse