Cited 0 times in Scipus Cited Count

Systematic modeling-driven experiments identify distinct molecular clockworks underlying hierarchically organized pacemaker neurons

DC Field Value Language
dc.contributor.authorJeong, EM-
dc.contributor.authorKwon, M-
dc.contributor.authorCho, E-
dc.contributor.authorLee, SH-
dc.contributor.authorKim, H-
dc.contributor.authorKim, EY-
dc.contributor.authorKim, JK-
dc.date.accessioned2023-02-13T06:23:01Z-
dc.date.available2023-02-13T06:23:01Z-
dc.date.issued2022-
dc.identifier.issn0027-8424-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/24469-
dc.description.abstractIn metazoan organisms, circadian ( approximately 24 h) rhythms are regulated by pacemaker neurons organized in a master-slave hierarchy. Although it is widely accepted that master pacemakers and slave oscillators generate rhythms via an identical negative feedback loop of transcription factor CLOCK (CLK) and repressor PERIOD (PER), their different roles imply heterogeneity in their molecular clockworks. Indeed, in Drosophila, defective binding between CLK and PER disrupts molecular rhythms in the master pacemakers, small ventral lateral neurons (sLN(v)s), but not in the slave oscillator, posterior dorsal neuron 1s (DN1(p)s). Here, we develop a systematic and expandable approach that unbiasedly searches the source of the heterogeneity in molecular clockworks from time-series data. In combination with in vivo experiments, we find that sLN(v)s exhibit higher synthesis and turnover of PER and lower CLK levels than DN1(p)s. Importantly, light shift analysis reveals that due to such a distinct molecular clockwork, sLN(v)s can obtain paradoxical characteristics as the master pacemaker, generating strong rhythms that are also flexibly adjustable to environmental changes. Our results identify the different characteristics of molecular clockworks of pacemaker neurons that underlie hierarchical multi-oscillator structure to ensure the rhythmic fitness of the organism.-
dc.language.isoen-
dc.subject.MESHAnimals-
dc.subject.MESHBiological Clocks-
dc.subject.MESHBrain-
dc.subject.MESHCircadian Clocks-
dc.subject.MESHCircadian Rhythm-
dc.subject.MESHCLOCK Proteins-
dc.subject.MESHDrosophila melanogaster-
dc.subject.MESHDrosophila Proteins-
dc.subject.MESHGene Expression-
dc.subject.MESHGene Expression Regulation-
dc.subject.MESHNeurons-
dc.subject.MESHPeriod Circadian Proteins-
dc.titleSystematic modeling-driven experiments identify distinct molecular clockworks underlying hierarchically organized pacemaker neurons-
dc.typeArticle-
dc.identifier.pmid35193959-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872709-
dc.subject.keywordcircadian rhythms-
dc.subject.keywordCLOCK-
dc.subject.keyworddorsal neuron-
dc.subject.keywordlateral neuron-
dc.subject.keywordmathematical modeling-
dc.contributor.affiliatedAuthorKim, EY-
dc.type.localJournal Papers-
dc.identifier.doi10.1073/pnas.2113403119-
dc.citation.titleProceedings of the National Academy of Sciences of the United States of America-
dc.citation.volume119-
dc.citation.number8-
dc.citation.date2022-
dc.citation.startPagee2113403119-
dc.citation.endPagee2113403119-
dc.identifier.bibliographicCitationProceedings of the National Academy of Sciences of the United States of America, 119(8). : e2113403119-e2113403119, 2022-
dc.identifier.eissn1091-6490-
dc.relation.journalidJ000278424-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Brain Science
Files in This Item:
35193959.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse