Cited 0 times in Scipus Cited Count

Modeling Pancreatic Cancer with Patient-Derived Organoids Integrating Cancer-Associated Fibroblasts

DC Field Value Language
dc.contributor.authorGo, YH-
dc.contributor.authorChoi, WH-
dc.contributor.authorBae, WJ-
dc.contributor.authorJung, SI-
dc.contributor.authorCho, CH-
dc.contributor.authorLee, SA-
dc.contributor.authorPark, JS-
dc.contributor.authorAhn, JM-
dc.contributor.authorKim, SW-
dc.contributor.authorLee, KJ-
dc.contributor.authorLee, D-
dc.contributor.authorYoo, J-
dc.date.accessioned2023-02-21T04:33:43Z-
dc.date.available2023-02-21T04:33:43Z-
dc.date.issued2022-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/24697-
dc.description.abstractPancreatic cancer is a devastating disease and is highly resistant to anticancer drugs because of its complex microenvironment. Cancer-associated fibroblasts (CAFs) are an important source of extracellular matrix (ECM) components, which alter the physical and chemical properties of pancreatic tissue, thus impairing effective intratumoral drug delivery and resulting in resistance to conventional chemotherapy. The objective of this study was to develop a new cancer organoid model, including a fibrous tumor microenvironment (TME) using CAFs. The CAF-integrated pancreatic cancer organoid (CIPCO) model developed in this study histologically mimicked human pancreatic cancer and included ECM production by CAFs. The cancer cell-CAF interaction in the CIPCO promoted epithelial-mesenchymal transition of cancer cells, which was reversed by CAF inhibition using all-trans retinoic acid. Deposition of newly synthesized collagen I in the CIPCO disturbed the delivery of gemcitabine to cancer cells, and treatment with collagenase increased the cytotoxic effect of gemcitabine. This model may lead to the development of next-generation cancer organoid models recapitulating the fibrous TME.-
dc.language.isoen-
dc.titleModeling Pancreatic Cancer with Patient-Derived Organoids Integrating Cancer-Associated Fibroblasts-
dc.typeArticle-
dc.identifier.pmid35565206-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103557-
dc.subject.keywordcancer-associated fibroblast-
dc.subject.keywordextracellular matrix-
dc.subject.keywordorganoid-
dc.subject.keywordpancreatic cancer-
dc.subject.keywordtumor microenvironment-
dc.contributor.affiliatedAuthorLee, D-
dc.type.localJournal Papers-
dc.identifier.doi10.3390/cancers14092077-
dc.citation.titleCancers-
dc.citation.volume14-
dc.citation.number9-
dc.citation.date2022-
dc.citation.startPage2077-
dc.citation.endPage2077-
dc.identifier.bibliographicCitationCancers, 14(9). : 2077-2077, 2022-
dc.identifier.eissn2072-6694-
dc.relation.journalidJ020726694-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Pathology
Files in This Item:
35565206.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse