Excessive increase in melanin pigment in the skin can be caused by a variety of environmental factors, including UV radiation, and can result in spots, freckles, and skin cancer. Therefore, it is important to develop functional whitening cosmetic reagents that regulate melanogenesis. In this study, we investigated the effects of echinochrome A (Ech A) on melanogenesis in the B16F10 murine melanoma cell line. We triggered B16F10 cells using alpha-MSH under Ech A treatment to observe melanin synthesis and analyze expression changes in melanogenesis-related enzymes (tyrosinase, tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2)) at the mRNA and protein levels. Furthermore, we measured expression changes in the microphthalmia-associated transcription factor (MITF), CREB, and pCREB proteins. Melanin synthesis in the cells stimulated by alpha-MSH was significantly reduced by Ech A. The expression of the tyrosinase, TYRP1, and TYRP2 mRNA and proteins was significantly decreased by Ech A, as was that of the MITF, CREB, and pCREB proteins. These results show that Ech A suppresses melanin synthesis by regulating melanogenesis-related enzymes through the CREB signaling pathway and suggest the potential of Ech A as a functional agent to prevent pigmentation and promote skin whitening.