Cited 0 times in Scipus Cited Count

Prediction Model for 30-Day Mortality after Non-Cardiac Surgery Using Machine-Learning Techniques Based on Preoperative Evaluation of Electronic Medical Records

Authors
Choi, B | Oh, AR | Lee, SH | Lee, DY | Lee, JH | Yang, K | Kim, HY  | Park, RW  | Park, J_대학원생
Citation
Journal of clinical medicine, 11(21). : 6487-6487, 2022
Journal Title
Journal of clinical medicine
ISSN
2077-0383
Abstract
BACKGROUND: Machine-learning techniques are useful for creating prediction models in clinical practice. This study aimed to construct a prediction model of postoperative 30-day mortality based on an automatically extracted electronic preoperative evaluation sheet. METHODS: We used data from 276,341 consecutive adult patients who underwent non-cardiac surgery between January 2011 and December 2020 at a tertiary center for model development and internal validation, and another dataset from 63,384 patients between January 2011 and October 2021 at another center for external validation. Postoperative 30-day mortality was 0.16%. We developed an extreme gradient boosting (XGB) prediction model using only variables from preoperative evaluation sheets. RESULTS: The model yielded an area under the curve of 0.960 and an area under the precision and recall curve of 0.216, which were 0.932 and 0.122, respectively, in the external validation set. The optimal threshold calculated by Youden's J statistic had a sensitivity of 0.885 and specificity of 0.914. In an additional analysis with balanced distribution, the model showed a similar predictive value. CONCLUSION: We presented a machine-learning prediction model for 30-day mortality after non-cardiac surgery using preoperative variables automatically extracted from electronic medical records and validated the model in a multi-center setting. Our model may help clinicians predict postoperative outcomes.
Keywords

DOI
10.3390/jcm11216487
PMID
36362715
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Anesthesiology & Pain Medicine
Journal Papers > School of Medicine / Graduate School of Medicine > Biomedical Informatics
Ajou Authors
김, 하연  |  박, 래웅
Full Text Link
Files in This Item:
36362715.pdfDownload
Export

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse