Vaginal delivery is accomplished by the force of the labor overcoming the resistance forces of birth canal. During this process, the fetal head passes through the birth canal and the skull receives pressure on the lateral aspect, resulting in molding, the convex shaping of the cranium. Also, the infant's skull is compressed by the mother's pelvic bony structures. These forces may lead to skull fractures and brain injuries. The hypothesis by the authors is that many skull fractures of the newborn present as incomplete fractures. The bony skull of the newborn is histologically primary bone tissue and which is incomplete in its ossification process. During birth the pressure forces upon the newborn's skull is gradual in one direction, rather than a sudden impact, and therefore it is thought that the skull fracture would be an incomplete fracture. However, it is very hard to ascertain the presence of incomplete fractures especially in incompletely ossified skulls with plain X-ray studies, and therefore it is possible that the real incidence of skull fractures in the newborn are higher than reported in the current and past literature. It is also probable that the external forces upon the skull that are sufficient to cause skull fractures, would also lead to significant brain injury more frequently than actually observed, and subsequently contribute to development of many brain disease later in children. The authors of this study propose that very close examination should be conducted to find incomplete fracture, and increased efforts should be made to establish the presence of possible accompanied brain injuries in babies with incomplete skull fracture. The definitive diagnosis and treatment, as well as close follow up of patients with brain injury will assist the clinician in determining the causes of neurological diseases especially in those with previously unknown etiologies, which may be due to birth injuries. Assistance may be also afforded in the early treatment and prevention of such conditions.