Cited 0 times in
A De-Identification Model for Korean Clinical Notes: Using Deep Learning Models
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chang, J | - |
dc.contributor.author | Park, J | - |
dc.contributor.author | Kim, C | - |
dc.contributor.author | Park, RW | - |
dc.date.accessioned | 2024-03-14T04:52:36Z | - |
dc.date.available | 2024-03-14T04:52:36Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 1879-8365 | - |
dc.identifier.uri | http://repository.ajou.ac.kr/handle/201003/32341 | - |
dc.description.abstract | To extract information from free-text in clinical records due to the patient's protected health information PHI in the records pre-processing of de-identification is required. Therefore we aimed to identify PHI list and fine-tune the deep learning BERT model for developing de-identification model. The result of fine-tuning the model is strict F1 score of 0.924. Due to the convinced score the model can be used for the development of a de-identification model. | - |
dc.language.iso | en | - |
dc.subject.MESH | Data Anonymization | - |
dc.subject.MESH | Deep Learning | - |
dc.subject.MESH | Humans | - |
dc.subject.MESH | Republic of Korea | - |
dc.title | A De-Identification Model for Korean Clinical Notes: Using Deep Learning Models | - |
dc.type | Article | - |
dc.identifier.pmid | 38269694 | - |
dc.subject.keyword | Electronic health record | - |
dc.subject.keyword | natural language processing | - |
dc.contributor.affiliatedAuthor | Park, RW | - |
dc.type.local | Journal Papers | - |
dc.identifier.doi | 10.3233/SHTI231242 | - |
dc.citation.title | Studies in health technology and informatics | - |
dc.citation.volume | 310 | - |
dc.citation.date | 2024 | - |
dc.citation.startPage | 1456 | - |
dc.citation.endPage | 1457 | - |
dc.identifier.bibliographicCitation | Studies in health technology and informatics, 310. : 1456-1457, 2024 | - |
dc.identifier.eissn | 0926-9630 | - |
dc.relation.journalid | J018798365 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.