Cited 0 times in Scipus Cited Count

A De-Identification Model for Korean Clinical Notes: Using Deep Learning Models

DC Field Value Language
dc.contributor.authorChang, J-
dc.contributor.authorPark, J-
dc.contributor.authorKim, C-
dc.contributor.authorPark, RW-
dc.date.accessioned2024-03-14T04:52:36Z-
dc.date.available2024-03-14T04:52:36Z-
dc.date.issued2024-
dc.identifier.issn1879-8365-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/32341-
dc.description.abstractTo extract information from free-text in clinical records due to the patient's protected health information PHI in the records pre-processing of de-identification is required. Therefore we aimed to identify PHI list and fine-tune the deep learning BERT model for developing de-identification model. The result of fine-tuning the model is strict F1 score of 0.924. Due to the convinced score the model can be used for the development of a de-identification model.-
dc.language.isoen-
dc.subject.MESHData Anonymization-
dc.subject.MESHDeep Learning-
dc.subject.MESHHumans-
dc.subject.MESHRepublic of Korea-
dc.titleA De-Identification Model for Korean Clinical Notes: Using Deep Learning Models-
dc.typeArticle-
dc.identifier.pmid38269694-
dc.subject.keywordElectronic health record-
dc.subject.keywordnatural language processing-
dc.contributor.affiliatedAuthorPark, RW-
dc.type.localJournal Papers-
dc.identifier.doi10.3233/SHTI231242-
dc.citation.titleStudies in health technology and informatics-
dc.citation.volume310-
dc.citation.date2024-
dc.citation.startPage1456-
dc.citation.endPage1457-
dc.identifier.bibliographicCitationStudies in health technology and informatics, 310. : 1456-1457, 2024-
dc.identifier.eissn0926-9630-
dc.relation.journalidJ018798365-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Biomedical Informatics
Files in This Item:
38269694.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse