Cited 0 times in Scipus Cited Count

Performance of ECG-Derived Digital Biomarker for Screening Coronary Occlusion in Resuscitated Out-of-Hospital Cardiac Arrest Patients: A Comparative Study between Artificial Intelligence and a Group of Experts

Authors
Park, M  | Choi, Y  | Shim, M  | Cho, Y | Park, J | Choi, J | Kim, J | Lee, E | Kim, SY
Citation
Journal of clinical medicine, 13(5). : 1354-1354, 2024
Journal Title
Journal of clinical medicine
ISSN
2077-0383
Abstract
Acute coronary syndrome is a significant part of cardiac etiology contributing to out-of-hospital cardiac arrest (OHCA), and immediate coronary angiography has been proposed to improve survival. This study evaluated the effectiveness of an AI algorithm in diagnosing near-total or total occlusion of coronary arteries in OHCA patients who regained spontaneous circulation. Conducted from 1 July 2019 to 30 June 2022 at a tertiary university hospital emergency department, it involved 82 OHCA patients, with 58 qualifying after exclusions. The AI used was the Quantitative ECG (QCG™) system, which provides a STEMI diagnostic score ranging from 0 to 100. The QCG score’s diagnostic performance was compared to assessments by two emergency physicians and three cardiologists. Among the patients, coronary occlusion was identified in 24. The QCG score showed a significant difference between occlusion and non-occlusion groups, with the former scoring higher. The QCG biomarker had an area under the curve (AUC) of 0.770, outperforming the expert group’s AUC of 0.676. It demonstrated 70.8% sensitivity and 79.4% specificity. These findings suggest that the AI-based ECG biomarker could predict coronary occlusion in resuscitated OHCA patients, and it was non-inferior to the consensus of the expert group.
Keywords

DOI
10.3390/jcm13051354
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Emergency Medicine
Ajou Authors
박, 민지  |  심, 문기  |  최, 유진
Files in This Item:
10.3390_jcm13051354.pdfDownload
Export

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse