Cited 0 times in Scipus Cited Count

Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery.

DC Field Value Language
dc.contributor.authorGeiman, TM-
dc.contributor.authorSankpal, UT-
dc.contributor.authorRobertson, AK-
dc.contributor.authorChen, Y-
dc.contributor.authorMazumdar, M-
dc.contributor.authorHeale, JT-
dc.contributor.authorSchmiesing, JA-
dc.contributor.authorKim, W-
dc.contributor.authorYokomori, K-
dc.contributor.authorZhao, Y-
dc.contributor.authorRobertson, KD-
dc.date.accessioned2011-07-14T01:09:09Z-
dc.date.available2011-07-14T01:09:09Z-
dc.date.issued2004-
dc.identifier.issn0305-1048-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/3332-
dc.description.abstractProper patterns of genome-wide DNA methylation, mediated by DNA methyltransferases DNMT1, -3A and -3B, are essential for embryonic development and genomic stability in mammalian cells. The de novo DNA methyltransferase DNMT3B is of particular interest because it is frequently overexpressed in tumor cells and is mutated in immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. In order to gain a better understanding of DNMT3B, in terms of the targeting of its methylation activity and its role in genome stability, we biochemically purified endogenous DNMT3B from HeLa cells. DNMT3B co-purifies and interacts, both in vivo and in vitro, with several components of the condensin complex (hCAP-C, hCAP-E and hCAP-G) and KIF4A. Condensin mediates genome-wide chromosome condensation at the onset of mitosis and is critical for proper segregation of sister chromatids. KIF4A is proposed to be a motor protein carrying DNA as cargo. DNMT3B also interacts with histone deacetylase 1 (HDAC1), the co-repressor SIN3A and the ATP-dependent chromatin remodeling enzyme hSNF2H. Further more, DNMT3B co-localizes with condensin and KIF4A on condensed chromosomes throughout mitosis. These studies therefore reveal the first direct link between the machineries regulating DNA methylation and mitotic chromosome condensation in mammalian cells.-
dc.language.isoen-
dc.subject.MESHAdenosine Triphosphatases-
dc.subject.MESHAnimals-
dc.subject.MESHChromosomal Proteins, Non-Histone-
dc.subject.MESHChromosome Segregation-
dc.subject.MESHChromosomes-
dc.subject.MESHDNA-
dc.subject.MESHDNA (Cytosine-5-)-Methyltransferase-
dc.subject.MESHDNA Methylation-
dc.subject.MESHDNA-Binding Proteins-
dc.subject.MESHFluorescent Antibody Technique-
dc.subject.MESHHela Cells-
dc.subject.MESHHumans-
dc.subject.MESHInterphase-
dc.subject.MESHKinesin-
dc.subject.MESHMacromolecular Substances-
dc.subject.MESHMitosis-
dc.subject.MESHMultiprotein Complexes-
dc.subject.MESHPrecipitin Tests-
dc.subject.MESHProtein Binding-
dc.subject.MESHProtein Transport-
dc.subject.MESHRepetitive Sequences, Nucleic Acid-
dc.subject.MESHXenopus-
dc.titleIsolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery.-
dc.typeArticle-
dc.identifier.pmid15148359-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC419596/-
dc.contributor.affiliatedAuthor김, 완기-
dc.type.localJournal Papers-
dc.identifier.doi10.1093/nar/gkh589-
dc.citation.titleNucleic acids research-
dc.citation.volume32-
dc.citation.number9-
dc.citation.date2004-
dc.citation.startPage2716-
dc.citation.endPage2729-
dc.identifier.bibliographicCitationNucleic acids research, 32(9). : 2716-2729, 2004-
dc.identifier.eissn1362-4962-
dc.relation.journalidJ003051048-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Pharmacology
Files in This Item:
15148359.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse