Microglia, the major immune effector cells in the CNS, become activated when the brain suffers injury. In this study, we observed that prothrombin, a zymogen of thrombin, induced NO release and mRNA expression of inducible NO synthase, IL-1beta, and TNF-alpha in rat brain microglia. The effect of prothrombin was independent of the protease activity of thrombin since hirudin, a specific inhibitor of thrombin, did not inhibit prothrombin-induced NO release. Furthermore, factor Xa enhanced the effect of prothrombin on microglial NO release. Kringle-2, a domain of prothrombin distinct from thrombin, mimicked the effect of prothrombin in inducing NO release and mRNA expression of inducible NO synthase, IL-1beta, and TNF-alpha. Prothrombin and kringle-2 both triggered the same intracellular signaling pathways. They both activated mitogen-activated protein kinases and NF-kappaB in a similar pattern. NO release stimulated by either was similarly reduced by inhibitors of the extracellular signal-regulated kinase pathway (PD98059), p38 (SB203580), NF-kappaB (N-acetylcysteine), protein kinase C (Go6976, bisindolylmaleimide, and Ro31-8220), and phospholipase C (D609 and U73122). These results suggest that prothrombin can activate microglia, and that, in addition to thrombin, kringle-2 is a domain of prothrombin independently capable of activating microglia.