Parkinson's disease is characterized by loss of nigral dopaminergic neurons and the presence of cytoplasmic inclusions known as Lewy bodies. alpha-Synuclein and its interacting partner synphilin-1 are among constituent proteins in these aggregates. The presence of ubiquitin and proteasome subunits in these inclusions supports a role for this protein degradation pathway in the processing of proteins involved in this disease. To begin elucidating the kinetics of synphilin-1 in cells, we studied its degradation pathway in HEK293 cells that had been engineered to stably express FLAG-tagged synphilin-1. Pulse-chase experiments revealed that this protein is relatively stable with a half-life of about 16 h. Treatment with proteasome inhibitors resulted in attenuation of degradation and the accumulation of high molecular weight ubiquitinated synphilin-1 in immunoprecipitation/immunoblot experiments. Additionally, proteasome inhibitors stimulated the formation of peri-nuclear inclusions which were immunoreactive for synphilin-1, ubiquitin and alpha-synuclein. Cell viability studies revealed increased susceptibility of synphilin-1 over-expressing cells to proteasomal dysfunction. These observations indicate that synphilin-1 is ubiquitinated and degraded by the proteasome. Accumulation of ubiquitinated synphilin-1 due to impaired clearance results in its aggregation as peri-nuclear inclusions and in poor cell survival.