Cited 0 times in Scipus Cited Count

Identification of N(G)-methylarginine residues in human heterogeneous RNP protein A1: Phe/Gly-Gly-Gly-Arg-Gly-Gly-Gly/Phe is a preferred recognition motif.

Authors
Kim, S | Merrill, BM | Rajpurohit, R | Kumar, A | Stone, KL | Papov, VV | Schneiders, JM | Szer, W | Wilson, SH | Paik, WK  | Williams, KR
Citation
Biochemistry, 36(17). : 5185-5192, 1997
Journal Title
Biochemistry
ISSN
0006-29601520-4995
Abstract
Three sites of N(G),N(G)-arginine methylation have been located at residues 205, 217, and 224 in the glycine-rich, COOH-terminal one-third of the HeLa A1 heterogeneous ribonucleoprotein. Together with the previously determined dimethylated arginine at position 193 [Williams et al., (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5666-5670], it is evident that all four sites fall within a span of sequence between residues 190 and 233 that contains multiple Arg-Gly-(Gly) sequences interspersed with phenylalanine residues. These RGG boxes have been postulated to represent an RNA binding motif [Kiledjian and Dreyfuss (1992) EMBO J. 11, 2655-2664]. Dimethylation of HeLa A1 appears to be quantitative at each of the four positions. Arginines 205 and 224 have been methylated in vitro by a nuclear protein arginine methyltransferase using recombinant (unmethylated) A1 as substrate. This suggests A1 may be an in vivo substrate for this enzyme. Examination of sequences surrounding the sites of methylation in A1 along with a compilation from the literature of sites that have been identified in other nuclear RNA binding proteins suggests a methylase-preferred recognition sequence of Phe/Gly-Gly-Gly-Arg-Gly-Gly-Gly/Phe, with the COOH-terminal flanking glycine being obligatory. Taken together with data in the literature, identification of the sites of A1 arginine methylation strongly suggests a role for this modification in modulating the interaction of A1 with nucleic acids.
MeSH

DOI
10.1021/bi9625509
PMID
9136880
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Biochemistry & Molecular Biology
Ajou Authors
백, 운기
Files in This Item:
There are no files associated with this item.
Export

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse