BACKGROUND AND PURPOSE: Extensive evidence has shown that oxidative stress mediates neuronal death in animal models of hypoxic-ischaemia. Brain biomarkers of oxidative stress need to be identified in order to better understand and treat brain damage in human stroke patients. The present study was conducted to identify potential target proteins of oxidative stress in the cerebrospinal fluid (CSF) of stroke patients with acute ischaemic brain injury.
METHODS: We performed two-dimensional polyacrylamide gel electrophoresis to separate protein samples obtained from the CSF of control and stroke patients. To determine protein oxidation levels, oxyblot was then used to detect protein carbonyls that were determined by formation of a stable 2,4-dinitrophenylhydrazine (DNP) product using an anti-DNP antibody.
RESULTS: We found that oxidation of serum albumin was increased in the CSF from stroke patients as well as rats who underwent permanent middle cerebral artery occlusion (6.5%, 23%, respectively). In stroke patients, oxidized albumin levels correlated to neurologic indications.
CONCLUSIONS: The present study suggests that oxidized albumin in CSF can be utilized as an oxidative stress marker in human stroke patients.