A machine learning technique, decision tree, is used to predict the susceptibility to two liver diseases, chronic hepatitis and cirrhosis, from single nucleotide polymorphism(SNP) data. Also, it is used to identify a set of SNPs relevant to those diseases. The experimental results show that a decision tree is able to distinguish chronic hepatitis from normal with accuracy of 69.59% and cirrhosis from normal with accuracy of 76.72% and the C4.5 decision rule is with accuracy of 69.59% for chronic hepatitis and 79.31% for cirrhosis. The experimental results show that decision tree is a potential tool to predict the susceptibility to chronic hepatitis and cirrhosis from SNP data.