Cited 0 times in Scipus Cited Count

Development of New Regeneration Methods in Animal Models with Chronic Tympanic membrane Perforations Using Tissue Engineering Techniques

Other Title
만성고막천공 동물모델에서 조직공학적 기법을 이용한 새로운 고막재생기술의 개발
Authors
김, 승원
Advisor
정, 연훈
Department
대학원 의학과
Degree
Doctor (2013)
Abstract
Tympanic Membrane (TM) perforation, in particular chronic otitis media, is one of the most frequent clinical problems in the otolaryngology field, which sometimes presents conductive healing loss. This study consists of three purposes and experiments; 1) we developed new animal models for chronic tympanic membrane perforation (CTMP). 2) We explored an approach for TM regeneration that latent progenitors or stem cells within epithelial layers may play an important role as a regulator of TM regeneration in both acute and chronic perforations. 3) And we also developed new regeneration methods to treat CTMPs. For the first purpose, nine methods were applied to 100 Sprague-Dawley rats; I) simple perforation, II) mitomycin C (MC) gelfoam for 10min, III) MC for 10min with saline gelfoam for 1 week, IV) MC for 10min and dexamethasone for 1 week, V) MC for 1 week (called as ‘Choung’s COM model II’), VI) dexamethasone for 1 week, VII) perforation by heated micropicks, VIII) heated perforations followed by dexamethasone for 1 week, and IX) dexamethasone application for 1 week after thermal-perforating with MC for 10min (called as ‘Choung’s COM model I’). For the second purpose, the neonatal rats (P3-5) were used for culture of TM cells. The cultured TM cells were immunostained with cytokeratin 19 (CK19), integrin β1 (INGβ1), P63 (epidermal stem cell markers), Ki67 (proliferation marker), and DAPI. Rat models for acute or chronic perforations in TMs were prepared. Chronic perforations were produced by a new method - ‘Choung’s COM model I’. The TMs were regularly obtained from rat models with acute or chronic perforations and immunostained with CK19, INGβ1, and DAPI. For the third purpose, we evaluated cell proliferation effects of insulin-like growth factor-binding protein (IGFBP), epidermal growth factor (EGF) and fibroblast growth factor (FGF) on in vitro cultures of TM cells using an MTT assay, and then constructed an EGF-releasing-chitosan patch scaffold (EGF-CPS) based on previous studies. We analyzed its toxicity and strength, and we studied it using scanning electron microscopy. We developed the IGFBP-chitosan patch scaffold (IGFBP-CPS) and EGF-CPS to healing in the CTMPs. In the first experiments, the perforation maintenance rates after 8 weeks were 0 % for method I, II, VI, VII, and VIII, 5.5% for III, 11.5% for IV, 65% for V, and 75% for IX. We then evaluated the reproducibility of the most effective methods using extra 70 rats. The average successful perforation rate was 71.6% (59 in 81 TMs) in method IX and 67.5% (27 in 40 TMs) in method V, which revealed constant reproducibility for CTMPs. From the second experiments, we found that the TMs expressed the highly positive staining of the epithelial stem cell markers. In the normal TMs, the TM stem cells were weakly expressed in all areas of TMs. On the other hand, the TM stem cells were highly expressed in perforated TMs, especially in the perforated regions near malleus handle and annulus, regardless of the acute and chronic perforations. In the third experiments, the EGF group, which was treated with EGF-CPS, showed healing in 56.5% of the animals (13/23), while the control group, which did not receive any treatment, revealed 20.8% healing (4/24) (P=0.04). Transmission electron microscopic studies of regenerated TMs in the EGF group showed much greater preservation of histological features, and TMs of the EGF group were thinner than spontaneously healed TMs. When we applied the IGFBP-CPS, 43.8% of the perforated TMs were regenerated completely in the animal models with CTMP. In conclusions, animal models with CTMPs can be efficiently created by thermal damage, MC, and dexamethasone. TMs contain progenitor or epidermal stem cells in the areas close to malleus handle or annulus, which may be key areas for TM regeneration. TM regeneration ability is not critically weakened even in chronic perforations. Novel EGF-CPS or IGFBP-CPS can be used as a nonsurgical intervention technique for treatment of CTMPs.

만성중이염은 이비인후과에서 가장 흔히 볼 수 있는 질환으로서 고막 천공을 동반하며, 전도성 난청을 초래하기도 한다. 본 연구는 다음과 같은 3가지 목적 및 연구 방법으로 이루어져 있다. 1) 만성 고막천공의 새로운 동물모델을 개발하고, 2) 급성 및 만성 고막천공에서 고막재생에 필요한 조절자로서 상피 세포층내의 잠복된 전구세포나 줄기세포의 분포 및 활성화 여부를 분석하고, 3) 만성 고막천공 치료를 위한 새로운 재생 방법들을 개발하는 것이 그 내용이다. 첫번째 연구는, 만성고막천공 동물모델 개발을 위해 100마리의 흰쥐 (Sprague-Dawley) 에서 9가지 방법을 적용하였다. 1) 단순 천공, 2) 10분간 mitomycin C gelfoam을 천공 부위에 위치시킴, 3) 10분간 mitomycin C gelfoam을 이용한 후 1주간 생리식염수에 적신 gelfoam을 천공에 위치시킴, 4) mitomycin C gelfoam을 10분 처리후 dexamethasone gelfoam을 1주 거치함, 5) mitomycin C gelfoam을 1주 (Choung’s COM model II) 거치함, 6) dexamethasone gelfoam을 1주 거치함, 7) 예열된 micropick을 이용하여 고막을 천공함, 8) 예열된 micropick을 이용한 고막 천공 후 dexamethasone gelfoam을 1주 거치함, 9) 예열된 micropick을 이용한 고막 천공 후 mitomycin C 10분 처리하고 dexamethasone gelfoam을 1주 거치함 (Choung’s COM model II) 의 방법을 사용하였다. 두번째 연구는, 생후 3~5일된 흰쥐의 고막 세포를 배양하였다. 배양한 고막세포는 cytokeratin 19 (CK19), Integrin β1 (INGβ1), p63 (상피줄기세포 표지자), Ki67 (증식 표지자), 그리고 DAPI 항체를 이용하여 면역염색하였다. 흰쥐를 이용한 급성, 만성 고막천공 동물모델을 만들고, 그 중 만성 고막천공 모델은 새로운 방법인 Choung’s COM model I으로 만들었다. 고막조직을 급성, 만성 천공모델에서 주기적으로 채취한 후 CK19, INGβ1, DAPI항체를 이용하여 면역염색하였다. 세번째 연구는, MTT assay를 이용하여 고막 세포의 in vitro 배양에서 인슐린유사성장인자 결합단백질 (insulin-like growth factor-binding protein; IGFBP), 상피세포증식인자 (epidermal growth factor; EGF), 섬유아세포성장인자 (fibroblast growth factor; FGF) 의 세포증식효과를 분석하였다. 또한, 기존의 연구를 바탕으로 EGF 방출 키토산 패치를 만들어 독성과 강도를 분석하고, 전자현미경으로 관찰하였다. 만성고막천공 치료를 위한 IGFBP 방출 키토산 패치와 FGF 방출 키토산 패치 또한 개발하였다. 첫번째 연구에서, 8주가 지난 후 고막천공의 유지율은 방법 I, II, VI, VII, VIII 에서는 0%, III (5.5%), IV (11.5%), V (65%), IX (75%)였다. 가장 효율적인 방법의 재현성을 평가하기 위해 추가적으로 70마리의 흰쥐를 사용하였다. 성공적으로 만들어진 고막천공의 비율은 방법 IX에서 71.6% (59/81), 방법 V에서 67.5%를 보여 만성고막천공 모델의 재현성은 일정하게 나타났다. 두번째 연구에서, 고막에서 상피줄기세포 표지자 CK19, INGβ1가 강한 발현을 보이는 것으로 나타났다. 정상 고막에서는 고막줄기세포가 고막 전체에 약하게 발현되었으나, 천공된 고막에서는 급성천공과 만성천공에 상관없이 강하게 발현되었으며 특히 천공주변, 즉 추골병과 천공측 고막륜 부위에 많이 분포하였다. 세번째 연구에서, EGF 방출 키토산 패치를 이용한 치료군 (EGF군) 에서는 56.5% (13/23) 에서 고막이 재생되었으며, 치료 하지 않은 대조군에서는 20.8% (4/24) 에서 고막 재생이 일어났다 (P=0.04). EGF군에서 재생된 고막을 투과 전자 현미경을 이용하여 관찰하였을 때, 조직학적 형태가 잘 보존되었으며, 대조군의 자연 치유된 고막에 비해 얇게 재생되었음을 확인하였다. IGFBP 방출 키토산 패치를 사용하였을 때에는 만성 고막천공 동물 모델에서 43.8%의 고막 천공이 재생되었다. 결론적으로 만성 고막천공 동물모델은 열 손상, mitomycin, dexamethasone을 이용하여 효과적으로 만들어낼 수 있었다. 고막은 추골와 고막륜 주변에 전구세포 또는 상피줄기세포를 가지고 있어 고막재생에 중요한 역할을 할 것으로 보이며, 고막의 재생능력은 만성 천공의 경우에서도 결정적으로 약해지지는 않았다. EGF 또는 IGFBP 방출 키토산 패치는 만성 고막천공의 비수술적인 치료방법으로 사용할 수 있을 것이다.
Keywords

Appears in Collections:
Theses > School of Medicine / Graduate School of Medicine > Doctor
Ajou Authors
김, 승원  |  정, 연훈
Full Text Link
Files in This Item:
There are no files associated with this item.
Export

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse